Skip to main content
Log in

Eco-friendly and low-cost amidoxime-functionalized microcrystalline cellulose/mesoporous silica composite for the selective adsorption of U(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Eco-friendly and low-cost composite, amidoxime-functionalized microcrystalline cellulose/mesoporous silica (MCC/MS-AO), were synthesized by co-condensation method. The obtained materials were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and N2 adsorption–desorption analysis. Batch experiments were carried out to study the adsorption capacity of U(VI) on MCC/MS-AO. The results show that the material has good adsorption capabilities for U(VI) including high capacity, good selectivity, and reusability. The adsorption process conforms to pseudo-second-order kinetic model and Langmuir model, and it is spontaneous and endothermic. Finally, the possible adsorption mechanism was further studied by X-ray photoelectron spectroscopy (XPS) techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C 0 :

Initial concentration of U(VI) in the solution, mg L1

C e :

Concentration of U(VI) in the solution after adsorption, mg L1

ΔG 0 :

Standard Gibbs free energy, kJ mol1

ΔH 0 :

Standard enthalpy, kJ mol1

K 1 :

Adsorption rate constants for pseudo-first-order kinetic model, min−1

K 2 :

Adsorption rate constants for pseudo-second-order kinetic model, min−1

K d :

Distribution constant, mL g1

K F :

Freundlich constant, which is related to adsorption capacity and adsorption strength, mg1−n Ln g1

K L :

Langmuir constant, which is related to the affinity of the binding site and the free energy of adsorption, L mg1

m:

Quantity of adsorbent, mg

n :

Freundlich linearity index

q e :

Adsorption capacity at equilibrium state, mg g1

q m :

Maximum adsorption capacity, mg g1

q t :

Adsorption capacity at any time, mg g1

R :

Thermodynamic constant, 8.314 J mol1 K1

R L :

Separation factor

ΔS 0 :

Standard entropy, J mol1 K1

S U/M :

Selectivity coefficient

t :

Adsorption time, min

T :

Temperature, K

V :

Volume of U(VI) containing solution, mL

η :

Adsorption efficiency

References

  1. Rahman ROA, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3(2):551–565. https://doi.org/10.3390/w3020551

    Article  Google Scholar 

  2. Amphlett JTM, Ogden MD, Foster RI, Syna N, Soldenhoff K, Sharrad CA (2018) Polyamine functionalised ion exchange resins: synthesis, characterisation and uranyl uptake. Chem Eng J 334:1361–1370. https://doi.org/10.1016/j.cej.2017.11.040

    Article  CAS  Google Scholar 

  3. Raff O, Wilken R-D (1999) Removal of dissolved uranium by nanofiltration. Desalination 122(2):147–150. https://doi.org/10.1016/S0011-9164(99)00035-1

    Article  CAS  Google Scholar 

  4. Senol A (2014) Optimization of extractive removal of uranium(VI) from aqueous acidic solutions using commercial amines: Linear solvation energy relation based modeling. Sep Purif Technol 131:35–49. https://doi.org/10.1016/j.seppur.2014.04.034

    Article  CAS  Google Scholar 

  5. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J (2016) A novel sequential process for remediating rare-earth wastewater. Chemosphere 144:2081–2090. https://doi.org/10.1016/j.chemosphere.2015.10.107

    Article  CAS  PubMed  Google Scholar 

  6. He H, Zong M, Dong F, Yang P, Ke G, Liu M, Nie X, Ren W, Bian L (2017) Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. J Radioanal Nucl Chem 313(1):59–67. https://doi.org/10.1007/s10967-017-5278-y

    Article  CAS  Google Scholar 

  7. Anirudhan TS, Lekshmi GS, Shainy F (2019) Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater. J Colloid Interface Sci 534:248–261. https://doi.org/10.1016/j.jcis.2018.09.009

    Article  PubMed  Google Scholar 

  8. Xue G, Yurun F, Li M, Dezhi G, Jie J, Jincheng Y, Haibin S, Hongyu G, Yujun Z (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. https://doi.org/10.1016/j.apsusc.2017.01.050

    Article  CAS  Google Scholar 

  9. Huang G, Peng W, Yang S (2018) Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. J Radioanal Nucl Chem 317(1):337–344. https://doi.org/10.1007/s10967-018-5850-0

    Article  CAS  Google Scholar 

  10. Liu X, Li J, Wang X, Chen C, Wang X (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. J Nucl Mater 466:56–64. https://doi.org/10.1016/j.jnucmat.2015.07.027

    Article  CAS  Google Scholar 

  11. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B (2019) Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energy Environ Sci 12(2):607–614. https://doi.org/10.1039/c8ee01438h

    Article  CAS  Google Scholar 

  12. Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem Eng J 262:198–209. https://doi.org/10.1016/j.cej.2014.09.061

    Article  CAS  Google Scholar 

  13. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  15. Wang Y, Zhang Y, Li Q, Li Y, Cao L, Li W (2020) Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohyd Polym 245:116627. https://doi.org/10.1016/j.carbpol.2020.116627

    Article  CAS  Google Scholar 

  16. Salama A, Aljohani HA, Shoueir KR (2018) Oxidized cellulose reinforced silica gel: New hybrid for dye adsorption. Mater Lett 230:293–296. https://doi.org/10.1016/j.matlet.2018.07.131

    Article  CAS  Google Scholar 

  17. Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159. https://doi.org/10.1016/j.cej.2017.03.051

    Article  CAS  Google Scholar 

  18. Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M (2016) Amidoxime-functionalized microcrystalline cellulose–mesoporous silica composites for carbon dioxide sorption at elevated temperatures. J Mater Chem A 4(13):4808–4819. https://doi.org/10.1039/C6TA00261G

    Article  CAS  Google Scholar 

  19. Fan L, Huang G, Yang S, Xie Y, Liu W, Shi J (2021) Preparation of phosphate-functionalized biopolymer/graphene oxide gels for enhanced selective adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 329(2):555–564. https://doi.org/10.1007/s10967-021-07723-x

    Article  CAS  Google Scholar 

  20. Huynh J, Palacio R, Safizadeh F, Lefèvre G, Descostes M, Lilian E, Guignard N, Rousseau J, Royer S, Tertre E, Batonneau-Gener I (2017) Uranium in water adsorption over NH2 functionalized ordered silica. ACS Appl Mater Interf 9. https://doi.org/10.1021/acsami.6b16158

  21. Zheng H, Zhou L, Liu Z, Le Z, Ouyang J, Huang G, Shehzad H (2019) Functionalization of mesoporous Fe3O4@SiO2 nanospheres for highly efficient U(VI) adsorption. Microporous Mesoporous Mater 279:316–322. https://doi.org/10.1016/j.micromeso.2018.12.038

    Article  CAS  Google Scholar 

  22. Dashtian K, Zare-Dorabei R (2017) Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J Colloid Interface Sci 494:114–123. https://doi.org/10.1016/j.jcis.2017.01.072

    Article  CAS  PubMed  Google Scholar 

  23. Yang S, Huang Y, Huang G, Peng W, Guo C, Shi J (2020) Preparation of amidoxime-functionalized biopolymer/graphene oxide gels and their application in selective adsorption separation of U(VI) from aqueous solution. J Radioanal Nucl Chem 324(2):847–855. https://doi.org/10.1007/s10967-020-07101-z

    Article  CAS  Google Scholar 

  24. Zhuang S, Cheng R, Kang M, Wang J (2018) Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J Clean Prod 188:655–661. https://doi.org/10.1016/j.jclepro.2018.04.047

    Article  CAS  Google Scholar 

  25. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  26. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283. https://doi.org/10.1016/j.cej.2013.09.034

    Article  CAS  Google Scholar 

  27. Ahmad M, Wang J, Yang Z, Zhang Q, Zhang B (2020) Ultrasonic-assisted preparation of amidoxime functionalized silica framework via oil-water emulsion method for selective uranium adsorption. Chem Eng J 389:124441. https://doi.org/10.1016/j.cej.2020.124441

    Article  CAS  Google Scholar 

  28. Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C (2017) Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Sep Purif Technol 174:455–465. https://doi.org/10.1016/j.seppur.2016.10.048

    Article  CAS  Google Scholar 

  29. Zhao Y, Li J, Zhang S, Wang X (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(vi). RSC Adv 4(62):32710–32717. https://doi.org/10.1039/C4RA05128A

    Article  CAS  Google Scholar 

  30. Dai Y, Jin J, Zhou L, Li T, Li Z, Liu Z, Huang G, Adesina AA (2017) Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 311(3):2029–2037. https://doi.org/10.1007/s10967-016-5128-3

    Article  CAS  Google Scholar 

  31. Yin X, Bai J, Tian W, Li S, Wang J, Wu X, Wang Y, Fan F, Huang Q, Qin Z (2017) Uranium sorption from saline lake brine by amidoximated silica. J Radioanal Nucl Chem 313(1):113–121. https://doi.org/10.1007/s10967-017-5283-1

    Article  CAS  Google Scholar 

  32. Kouraim MN, Hagag M, Ali AH (2020) Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose. Radiochim Acta 108(4):261–271. https://doi.org/10.1515/ract-2019-3149

    Article  CAS  Google Scholar 

  33. Fan Q-h, Li P, Chen Y-f, Wu W-s (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J Hazard Mater 192(3):1851–1859. https://doi.org/10.1016/j.jhazmat.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  34. Li D, Egodawatte S, Kaplan DI, Larsen SC, Serkiz SM, Seaman JC, Scheckel KG, Lin J, Pan Y (2017) Sequestration of U(VI) from acidic, alkaline, and high ionic-strength aqueous media by functionalized magnetic mesoporous silica nanoparticles: capacity and binding mechanisms. Environ Sci Technol 51(24):14330–14341. https://doi.org/10.1021/acs.est.7b03778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y, Zeng G (2020) Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A 8(16):7588–7625. https://doi.org/10.1039/C9TA14082D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the national science foundation of China (21866005), Jiangxi Key plan of research and development (20192BBH80011).

Funding

Innovative Research Group Project of the National Natural Science Foundation of China,21866005,wenbin Liu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Huang, Y., Huang, G. et al. Eco-friendly and low-cost amidoxime-functionalized microcrystalline cellulose/mesoporous silica composite for the selective adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 331, 2055–2068 (2022). https://doi.org/10.1007/s10967-022-08261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08261-w

Keywords

Navigation