Skip to main content
Log in

Separation of ultra-trace amount of 44mSc from α-particle activated KBr target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

81,82mRb and trace amount 44mSc were produced by irradiation of potassium bromide target with 36 MeV alpha particle beam via natBr(α,xn)81,82mRb and 41K(α,n)44mSc reactions respectively. Different liquid–liquid extraction (LLX) studies were performed to determine best separation condition for Rb and Sc. In LLX (1) cation exchanger di-(2-ethylhexyl)phosphoric acid (HDEHP) dissolved in cyclohexane, (2) 18-crown-6 in nitrobenzene were used as organic phase and various concentration of HCl, HNO3 and HClO4 were used as aqueous phase. Radiochemical separation with high separation factor has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thorsbro B (2020) Atomic data needs in astrophysics: the galactic center scandium mystery. Atoms 8:4

    Article  CAS  Google Scholar 

  2. Bate GL, Potratz HA, Huizenga JR (1960) Scandium, chromium and europium in stone meteorites by simultaneous neutron activation analysis. Geochim Cosmochim Acta 18:101

    Article  CAS  Google Scholar 

  3. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509

    Article  CAS  Google Scholar 

  4. Naskar N, Lahiri S (2021) Theranostic terbium radioisotopes: challenges in production for clinical application. Front Med 8:675014

    Article  Google Scholar 

  5. Talip Z, Favaretto C, Geistlich S, van der Meulen NP (2020) A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules 25:966

    Article  CAS  PubMed Central  Google Scholar 

  6. Filosofov DV, Loktionova NS, Rösch F (2010) A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 98:149–156

    Article  CAS  Google Scholar 

  7. Hassan HE, Al-Abyad M, Mohamed G (2018) Production of 44Ti→ 44Sc generator in comparison with direct routes by cyclotrons: Cross section evaluation using nuclear models codes. Arab J Nucl Sci Appl 51:57–72

    Google Scholar 

  8. Alabyad M, Mohamed GY, Hassan HE, Takács S, Ditrói F (2018) Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc. J Radioanal Nucl Chem 316:119–128

    Article  CAS  Google Scholar 

  9. Sitarz M, Szkliniarz K, Jastrzębski J, Choiński J, Guertin A, Haddad F, Jakubowski A, Kapinos K, Kisieliński M, Majkowska A, Nigron E (2018) Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 142:104

    Article  CAS  PubMed  Google Scholar 

  10. Carzaniga TS, Braccini S (2019) Cross-section measurement of 44mSc, 47Sc, 48Sc and 47Ca for an optimized 47Sc production with an 18 MeV medical PET cyclotron. Appl Radiat Isot 143:18–23

    Article  CAS  PubMed  Google Scholar 

  11. Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, Scampoli P, Türler A, van der Meulen N (2017) Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Appl Radiat Isot 129:96–102

    Article  CAS  PubMed  Google Scholar 

  12. Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U, Bilewicz A (2013) Cyclotron production of 44Sc for clinical application. Radiochim Acta 101:333–338

    Article  CAS  Google Scholar 

  13. Loveless CS, Blanco JR, Diehl GL, Elbahrawi RT, Carzaniga TS, Braccini S, Lapi SE (2021) Cyclotron production and separation of scandium radionuclides from natural titanium metal and titanium dioxide targets. J Nucl Med 62:131–136

    Article  CAS  PubMed  Google Scholar 

  14. Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Cho YS, Lee YO (2009) Investigations of the natTi (p, x) 43,44m,44g,46,47,48Sc, 48V nuclear processes up to 40 MeV. Appl Radiat Isot 67:1348–1354

    Article  CAS  PubMed  Google Scholar 

  15. Shahid M, Kim K, Kim G, Naik H (2018) Measurement of excitation functions of residual radionuclides from natTi (p, x) reactions up to 44 MeV. J Radioanal Nucl Chem 318:2049–2057

    Article  CAS  Google Scholar 

  16. Daraban L, Rebeles RA, Hermanne A, Tarkanyi F, Takacs S (2009) Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37 MeV. Nucl Inst Meth Phys Res B 267:755–759

    Article  CAS  Google Scholar 

  17. Duchemin C, Guertin A, Haddad F, Michel N, Métivier V (2015) Production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Phys Med Biol 60:6847

    Article  CAS  PubMed  Google Scholar 

  18. Lahiri S, Banerjee S, Das NR (1996) LLX separation of carrier free 47Sc, 48V and 48,49,51Cr produced in α-particle activated titanium with HDEHP. Appl Radiat Isot 47:1–6

    Article  CAS  Google Scholar 

  19. Das NR, Banerjee S, Lahiri S (1995) Sequential separation of carrier free 47Sc, 48V and 48,49,51Cr from α-particle activated titanium with TOA. Radiochim Acta 69:61–64

    Article  CAS  Google Scholar 

  20. Szelecsényi F, Kovács Z, Nagatsu K, Zhang MR, Suzuki K (2017) Production cross sections of radioisotopes from 3He-particle induced nuclear reactions on natural titanium. Appl Radiat Isot 119:94–100

    Article  PubMed  Google Scholar 

  21. Skobelev NK, Kulko AA, Penionzhkevich YE, Voskoboinik EI, Kroha V, Burjan V, Hons Z, Mrázek J, Piskoř Š, Šimečkova E (2013) Cross sections for production of 43Sc, 44Sc, and 46Sc isotopes in the 45Sc+ 3He reaction. Phys Part Nuclei Letters 10:410–414

    Article  CAS  Google Scholar 

  22. Szkliniarz K, Sitarz M, Walczak R, Jastrzębski J, Bilewicz A, Choiński J, Jakubowski A, Majkowska A, Stolarz A, Trzcińska A, Zipper W (2016) Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 118:182–189

    Article  CAS  PubMed  Google Scholar 

  23. Riley C, Ueno K, Linder B (1964) Cross sections and isomer ratios for the 41K (α, n)Sc44m, 44g reaction. Phys Rev 135:B1340

    Article  Google Scholar 

  24. Hagebø E, Ravn H (1969) Cross-sections for the formation of Sb and Sc isotopes by irradiation of Y, La, Ta, and Au with 18.2 GeV protons. J Inorg Nucl Chem 31:897–907

    Article  Google Scholar 

  25. Choudhury D, Lahiri S, Naskar N, Delonca M, Stora T, Ramos JP, Aubert E, Dorsival A, Vollaire J, Augusto R, Ferrari A (2020) Quantification of radioisotopes produced in 1.4 GeV proton irradiated lead–bismuth eutectic targets. Eur Phys J- A 56:1–5

    Article  Google Scholar 

  26. Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles R (2012) Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot 70:1526–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Severin GW, Gagnon K, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ (2012) 44gSc from metal calcium targets for PET. In AIP Conference Proceedings (Vol. 1509, No. 1, pp. 125–128). American Institute of Physics.

  28. van der Meulen NP, Bunka M, Domnanich KA, Müller C, Haller S, Vermeulen C, Türler A, Schibli R (2015) Cyclotron production of 44Sc: from bench to bedside. Nucl Med Biol 42:745–751

    Article  PubMed  Google Scholar 

  29. Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ (2015) Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentylpentylphosphonate functionalized extraction resin. Appl Radiat Isot 95:23–29

    Article  CAS  PubMed  Google Scholar 

  30. Wittwer D, Dressler R, Eichler R, Gäggeler HW, Piguet D, Serov A, Türler A, Vögele A (2011) The thermal release of scandium from titanium metal–a simple way to produce pure 44Sc for PET application. Radiochim Acta 99:193–196

    Article  CAS  Google Scholar 

  31. Roesch F (2012) Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Curr Radiopharm 5:187–201

    Article  CAS  PubMed  Google Scholar 

  32. Bhattacharyya D, De A (1984) Adsorption of tracer cations, and the separation of carrier-free 95Nb from 95Zr, XU1 from U and 45Ca from 46Sc on titanium phosphate column. J Radioanal Nucl Chem 83:309–318

    Article  CAS  Google Scholar 

  33. Lahiri S, Wu XL, Weifan Y, Yanbing X, Shuanggui Y (2003) Solvent extraction of 46Sc with PMBP. J Radioanal Nucl Chem 257:431–432

    Article  CAS  Google Scholar 

  34. Stoll HP, Huwer H, Vollmar B, Bialy J, Schmitt M, Peters JW, Schieffer H (2000) Experimental validation of a new coronary guide wire labeled with rubidium 81/krypton 81m for continuous assessment of myocardial blood flow. J Nucl Cardiol 7:255–262

    Article  CAS  PubMed  Google Scholar 

  35. Cherry SR, Carnochan P, Babich JW, Serafini F, Rowell NP, Watson IA (1990) Quantitative in vivo measurements of tumor perfusion using rubidium-81 and positron emission tomography. J Nucl Med 31:1307–1315

    CAS  PubMed  Google Scholar 

  36. Shea MJ, Wilson RA, deLandsheere CM, Deanfield JE, Watson IA, Kensett MJ, Jones T, Selwyn AP (1987) Use of short-and long-lived rubidium tracers for the study of transient ischemia. J Nucl Med 28:989–997

    CAS  PubMed  Google Scholar 

  37. Rowshanfarzad P, Jalilian A, Kiyomarsi M, Sabet M, Karimian A, Moradkhani S, Mirzaii M (2006) Production, quality control and initial imaging studies of [82mRb] RbCl for PET studies. Nukleonika 51:209–215

    CAS  Google Scholar 

  38. Kovács Z, Tárkányi F, Qaim SM, Stöcklin G (1991) Excitation functions for the formation of some radioisotopes of rubidium in proton induced nuclear reactions on natKr, 82Kr and 83Kr with special reference to the production of 81Rb (81mKr) generator radionuclide. Int J Radiat Appl Instrum Part A. Appl Radiat Isot 42:329–335

    Article  Google Scholar 

  39. Horiguchi T, Noma H, Yoshizawa Y, Takemi H, Hasai H, Kiso Y (1980) Excitation functions of proton induced nuclear reactions on 85Rb. Int J Appl Radiat Isot 31:141–151

    Article  CAS  Google Scholar 

  40. Dóczi R, Takács S, Tárkányi F, Scholten B, Qaim SM (2000) Possibility of production of 81Rb via the 80Kr (d, n) reaction at a small cyclotron. Radiochim Acta 88:135–138

    Article  Google Scholar 

  41. Homma Y, Kurata K (1979) Excitation functions for the production of 81Rb- 81mKr via the 79Br (α, 2n) 81Rb and the 81Br (3He, 3n) 81Rb reactions. Int J Appl Radiat Isot 30:345–348

    Article  CAS  Google Scholar 

  42. Sathik NPM, Ansari MA, Singh BP, Ismail M, Rashid MH (2002) Preequilibrium emission in induced reactions on bromine and thallium. Phys Rev C 66:014602

    Article  Google Scholar 

  43. Beyer GJ, Ravn HL, Huang Y, ISOLDE collaboration (1984) A new type of 81Rb-81mKr generator for medical use. Int J Appl Radiat Isot 35:1075–1076

    Article  CAS  PubMed  Google Scholar 

  44. Grant PM, Miller DA, Gilmore JS, O’Brien HA Jr (1982) Medium-energy spallation cross sections. 1. RbBr irradiation with 800-MeV protons. Int J Appl Radiat Isot 33:415–417

    Article  CAS  Google Scholar 

  45. Hanser A, Feurer B (1981) Pure 81Rb for medical use obtained by electromagnetic isotope separation. Int J Appl Radiat Isot 32:775–778

    Article  CAS  PubMed  Google Scholar 

  46. Hanser A (1989) Routine production of high purity 81Rb by means of electromagnetic isotope separation. Int J Radiat Appl Instrum [A]. Appl Radiat Isot 40:309–314

    Article  CAS  Google Scholar 

  47. Schneider RJ, Goldberg CJ (1976) Production of rubidium-81 by the reaction 85Rb (p, 5n) 81Sr and decay of 81Sr. Int J Appl Radiat Isot 27:189–191

    Article  CAS  PubMed  Google Scholar 

  48. Brits RJN (1989) 81Rb/Na separation for the production of a 81Rb/81mKr generator. Int J Radiat Appl Instrum [A]. Appl Radiat Isot 40:103–107

    Article  CAS  Google Scholar 

  49. Ghosh K, Choudhury D, Lahiri S (2019) Production and separation of no-carrier-added 48V from 16O irradiated chlorine target. J Radioanal Nucl Chem 321:91–99

    Article  CAS  Google Scholar 

  50. Ghosh K, Choudhury D, Lahiri S (2018) Production and separation of no-carrier added 43,44,44mSc from 12C irradiated BaCl2 target. In: Proceedings of 4th international conference on applications of radiotracers and energetic beams in sciences, ARCEBS18, 11–17 Nov, 2018, fFort Raichak, Kolkata, India

  51. Ghosh K, Choudhury D, Lahiri S (2018) Separation of no-carrier-added 48V from 16O irradiated chloride target. In: Proceedings of the 8th biennial symposium on emerging trends in separation science and technology, SESTEC 2018, 23–26 May, 2018, BITS Pilani, Goa, India

  52. Levkovski, V. N. (1991) Cross sections of medium mass nuclide activation (A= 40–100) by medium energy protons and alpha-particles (E= 10–50 MeV). Inter-Vesi, Moscow, USSR

  53. http:// nndc.gov.in. Last Accessed on 22–10–2021

  54. Greenwood NN, Earnshaw A (2012) Chemistry of the elements, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  55. Verweij W (2010) Chemical equilibria in aquatic systems: CHEAQS Next.

  56. Mukhopadhyay K, Nayak D, Lahiri S (2000) Separation of 134Cs and 133Ba using 18-crown-6 ether. Radioact Radiochem 11:19–22

    Google Scholar 

  57. Banerjee S, Mukhopadhyay K, Mukhopadhyay B, Lahiri S (2002) Extraction separation of 86Rb from 85Sr in trace level with 18-crown-6 in nitrobenzene. J Radioanal Nucl Chem 252:157–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author KG is thankful to Dr. M S Kulkarni and Dr. R Ravishankar for their constant support and encouragement. Authors are thankful to the cyclotron staffs of Variable Energy Cyclotron Centre (VECC), Kolkata for their cooperation. Authors are also grateful to VECC target laboratory for target preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Naskar, N. & Lahiri, S. Separation of ultra-trace amount of 44mSc from α-particle activated KBr target. J Radioanal Nucl Chem 331, 483–490 (2022). https://doi.org/10.1007/s10967-021-08088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08088-x

Keywords

Navigation