Skip to main content
Log in

Estimation of production yield of 93mMo and other residues from a 7Li-induced reaction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The crux of the present work is to analyze the yield of the residues produced in the 7Li-induced reaction on 89Y target in the low energy range. The experimental yields of 93mMo, which is a significant product in the energy range considered, and other coproduced radionuclides, such as 92mNb, 89Zr, 91mY, and 90mY have been measured within 19–40 MeV energy, and are compared with the compound and pre-compound models in the framework of the statistical reaction model code EMPIRE. The maximum measured yield for 93mMo is 374 MBq/C at 31.3 MeV in a 3 mg/cm2 thick 89Y target corresponding to a cross-section of 396.8 ± 38.6 mb from the 89Y(7Li,3n)93mMo reaction. The model estimations well reproduce the experimental yields of 93mMo. The possible production of stable isotopes has also been estimated theoretically from the model over the experimental energy range. The reaction could be an alternative route for the production of no-carrier-added 93mMo radionuclide provided that the radionuclides are chemically separated from the bulk 89Y matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar D, Maiti M, Lahiri S (2017) Production of no-carrier-added 97Ru from 11B-activated natural yttrium target and its subsequent separation using liquid–liquid extraction. Sep Sci Technol 52:2372–2378

    Article  CAS  Google Scholar 

  2. Kumar D, Maiti M, Choudhury D, Lahiri S (2019) Production yield of residues in 11B+93Nb reaction and separation of trace scale Pd from bulk Nb using liquid–liquid extraction. Sep Sci Technol 54:1661–1668

    Article  CAS  Google Scholar 

  3. Payolla FB, Massabni AC, Orvig C (2019) Radiopharmaceuticals for diagnosis in nuclear medicine: a short review. Eclética Quím J. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19

    Article  Google Scholar 

  4. Maiti M (2011) New measurement of cross sections of evaporation residues from the natPr +12C reaction: a comparative study on the production of 149Tb. Phys Rev C 84:044615-7

    Google Scholar 

  5. Maiti M, Lahiri S, Tomar BS (2011) Investigation on the production and isolation of 149,150,151Tb from 12C irradiated natural praseodymium target. Radiochim Acta 99:527–533

    Article  CAS  Google Scholar 

  6. Ditrói F, Hermanne A, Corniani E, Takács S, Tárkányi F, Csikai J, Yu Shubin N (2009) Investigation of proton induced reactions on niobium at low and medium energies. Nucl Instrum Methods Phys Res B 267:3364–3374

    Article  Google Scholar 

  7. Ditrói F, Takács S, Tárkányi F, Baba M, Corniani E, Yu Shubin N (2008) Study of proton induced reactions on niobium targets up to 70 MeV. Nucl Instrum Methods Phys Res B 266:5087–5100

    Article  Google Scholar 

  8. Aikawa M, Komori Y, Haba H (2018) Activation cross-section of deuteron-induced reactions on niobium up to 24 MeV. Nucl Instrum Methods Phys Res B 436:217–220

    Article  CAS  Google Scholar 

  9. Tárkányi F, Hermanne A, Ditrói F, Takács S, Király B, Baba M, Ohtsuki T, Kovalev SF, Ignatyuk AV (2007) Production of longer lived radionuclides in deuteron induced reactions on niobium. Nucl Instrum Methods Phys Res B 255:297–303

    Article  Google Scholar 

  10. Ditrói F, Tárkányi F, Takács S, Hermanne A, Ignatyuk AG (2016) Activation cross-section of deuteron induced reactions on niobium in the energy range 30–50 MeV energy range. Nucl Instrum Methods Phys Res B 373:17–27

    Article  Google Scholar 

  11. Singh BP, Sharma MK, Musthafa MM, Bhardwaj HD, Prasad R (2006) A study of pre-equilibrium emission in some proton- and alpha-induced reactions. Nucl Instrum Methods Phys Res, Sect B 562:717–720

    Article  CAS  Google Scholar 

  12. Uddin MS, Hagiwara M, Tarkanyi F, Ditroi F, Baba M (2004) Experimental studies on the proton-induced activation reactions of molybdenum in the energy range 22–67 MeV. Appl Radiat Isot 60:911–920

    Article  CAS  Google Scholar 

  13. De La Vega Vedoya M, Wasilevsky C, Nassife SJ (1981) Alpha particle induced reactions on zirconium. J Radioanal Chem 67:165–181

    Article  Google Scholar 

  14. Ernst J, Ibowski R, Klampfl H, Machner H, Mayer-Kuckuk T, Schanz R (1982) Investigation of alpha-induced reactions on niobium and tantalum. Z Phys A Atoms Nucl 308:301–313

    Article  CAS  Google Scholar 

  15. Sadeghi M, Enferadi M, Nadi H, Tenreiro C (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem 286:141–144

    Article  CAS  Google Scholar 

  16. Kumar D, Maiti M (2017) Measurement of the cross section of the residues from the 11B-induced reaction on 89Y and 93Nb: production of 97Ru and 101mRh. Phys Rev C 95:064602-12

    Google Scholar 

  17. Chauhan A, Maiti M, Lahiri S (2019) Measurement and analysis of excitation functions of the residues from 12C+89Y: a major production route for 97Ru. Phys Rev C 99:064609-10

    Google Scholar 

  18. Lahiri S, Mukhopadhyay B, Das NR (1998) Studies on liquid–liquid extraction of no-carrier-added 91,92,96Nb and 93mMo isotopes produced in α-particle activated zirconium target with HDEHP. Radiochim Acta 83:93–95

    Article  CAS  Google Scholar 

  19. Sen K, Sarkar K, Lahiri S (2017) Production, separation and embedment of no-carrier added 93mMo in iron-doped calcium alginate beads from 7Li irradiated yttrium target. J Radioanal Nucl Chem 314:451–456

    Article  CAS  Google Scholar 

  20. Maiti M (2013) Production and separation of 97Ru and coproduced 95Tc from 12C-induced reaction on yttrium target. Radiochim Acta 101:437–443

    Article  CAS  Google Scholar 

  21. Maiti M, Lahiri S (2011) Production and separation of 97Ru from 7Li activated natural niobium. Radiochim Acta 99:359–364

    Article  CAS  Google Scholar 

  22. Maiti M, Lahiri S (2010) New routes for production of proton-rich Tc isotopes. Phys Rev C 81:024603-7

    Article  Google Scholar 

  23. Maiti M, Lahiri S (2015) Measurement of yield of residues produced in 12C+natY reaction and subsequent separation of 97Ru from Y target using cation exchange resin. Radiochim Acta 103:7–13

    Article  CAS  Google Scholar 

  24. Maiti M (2013) Nuclear and chemical data for life sciences. J Radioanal Nucl Chem 297:319–329

    Article  CAS  Google Scholar 

  25. Maiti M (2011) Probable nuclear reactions to produce proton rich rhenium radionuclides. J Radioanal Nucl Chem 290:11–16

    Article  CAS  Google Scholar 

  26. Maiti M, Lahiri S (2010) Separation of 99Mo and 99mTc by liquid liquid extraction using trioctylamine as extractant. J Radioanal Nucl Chem 283:661–663

    Article  CAS  Google Scholar 

  27. Lahiri S, Maiti M (2012) Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim Acta 100:85–94

    Article  CAS  Google Scholar 

  28. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res, Sect B 268:1818–1823

    Article  CAS  Google Scholar 

  29. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/

  30. Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108:2655–2715

    Article  CAS  Google Scholar 

  31. Kumar D, Maiti M (2017) Incomplete fusion analysis of the 7Li-induced reaction on 93Nb within 3–6.5 MeV/nucleon. Phys Rev C 96:044624-5

    Google Scholar 

  32. Chauhan A, Maiti M (2019) New measurement of residues from 7Li+natTa reaction within 4–6.5 MeV/nucleon: production yield for 183Os. Phys Rev C 99:034608-10

    Google Scholar 

  33. Qaim SM (1982) Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim Acta 30:147–162

    CAS  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank the BARC-TIFR Pelletron team and the colleagues from the laboratory for their ardent teamwork during the experiment. A research grant from SERB (INDIA) CRG/2018/002354, and the fellowship from MHRD, Government of India, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapat, R., Maiti, M. Estimation of production yield of 93mMo and other residues from a 7Li-induced reaction. J Radioanal Nucl Chem 325, 757–763 (2020). https://doi.org/10.1007/s10967-020-07157-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07157-x

Keywords

Navigation