Skip to main content
Log in

Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nano-silica (Si-AL800) was extracted from the thermally treated rice husk ash by acid leaching route. Coating surface of the extracted silica with chitosan gel was done by a direct mixing to produce silica–chitosan nanocomposite (Si-AL800-chitosan). The resulting samples were examined by different analytical techniques such as SEM, TEM, XRD, BET, TGA/DTA, FT-IR and pore size distribution. The adsorption efficiency of samples towards removal of 152+154Eu radionuclide was investigated under different variables. A maximum capacity of 160 mg/g was found at pH of 5 and 298 K. The order of reaction mechanism is described by pseudo-second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Peterson J, MacDonell M, Haroun L, Monette F (2007) Radiological and chemical fact sheets to support health risk analyses for contaminated areas. Argonne National Laboratory, Environmental Science. https://www.remm.nlm.gov/ANL_ContaminantFactSheets_All_070418.pdf

  2. Valdovinos V, Monroy-Guzman F, Bustos E (2014) Treatment methods for radioactive wastes and its electrochemical applications. Environ Risk Assess Soil Contam. https://doi.org/10.5772/57445

    Article  Google Scholar 

  3. Hassan HS, Kenawy SH, El-Bassyouni GT, Hamzawy EMA, Hassan RS (2018) Sorption behavior of cesium and europium radionuclides onto nano-sized calcium silicate. Part Sci Technol. https://doi.org/10.1080/02726351.2018.1508101

    Article  Google Scholar 

  4. Mansur M, Mushtaq A (2011) Separation of yttrium-90 from strontium-90 via colloid formation. J Radioanal Nucl Chem 288:337–340. https://doi.org/10.1007/s10967-011-1015-0

    Article  CAS  Google Scholar 

  5. Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130. https://doi.org/10.1016/j.desal.2013.02.022

    Article  CAS  Google Scholar 

  6. Attallah MF, Rizk S, Shady S (2018) Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate. Nucl Sci Technol 29:84–92. https://doi.org/10.1007/s41365-018-0423-z

    Article  Google Scholar 

  7. Hassan HS, Attallah MF, Yakout SM (2010) Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J Radioanal Nucl Chem 286:17–26. http://doi.org/10.1007/s10967-010-0654-x. https://doi.org/10.1016/s0167-577x(02)00879-0

  8. Rong L, Wei Z, Yuantao C, Cheng X, Guangzhuang H, Zhen H (2020) Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution. Sep Purif Technol 233:115999. https://doi.org/10.1016/j.seppur.2019.115999

    Article  CAS  Google Scholar 

  9. Paawan K, Pervinder K, Khushwinder K (2020) Adsorptive removal of imazethapyr and imazamox from aqueous solution using modified rice husk. J Clean Prod 244:118699. https://doi.org/10.1016/j.jclepro.2019.118699

    Article  CAS  Google Scholar 

  10. Soltani N, Bahrami A, Pech-Canul MI, González LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935. https://doi.org/10.1016/j.cej.2014.11.056

    Article  CAS  Google Scholar 

  11. Fernandes IJ, Calheiro D, Sánchez FAL, Camacho ALD, de Campos Rocha TLA, Moraes CAM, de Sousa VC (2017) Characterization of silica produced from rice husk ash: comparison of purification and processing methods. Mat Res 20:512–518. https://doi.org/10.1590/1980-5373-mr-2016-1043

    Article  Google Scholar 

  12. Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57:818–821. https://doi.org/10.1016/s0167-577x(02)00879-0

    Article  CAS  Google Scholar 

  13. Saceda J-JF, de Leon RL, Rintramee K, Prayoonpokarach S, Wittayakun J (2011) Properties of silica from rice husk and rice husk ash and their utilization for zeolite Y synthesis. Quim Nova 34:1394–1397. https://doi.org/10.1590/s0100-40422011000800018

    Article  CAS  Google Scholar 

  14. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM (2013) Nanosilica from rice husk: extraction and characterization. Ind Crop Prod 43:291–296. https://doi.org/10.1016/j.indcrop.2012.06.050

    Article  CAS  Google Scholar 

  15. Shen Y, Zhao P, Shao Q (2014) Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater 188:46–76. https://doi.org/10.1016/j.micromeso.2014.01.005

    Article  CAS  Google Scholar 

  16. Lee JH, Kwona JH, Lee J-W, Lee H-S, Chang JH, Sang B-I (2017) Preparation of high purity silica originated from rice husks by chemically removing metallic impurities. J Ind Eng Chem 50:79–85. https://doi.org/10.1016/j.jiec.2017.01.033

    Article  CAS  Google Scholar 

  17. Daifullah AAM, Girgis BS, Gad HMH (2004) A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf A Physichem Eng Asp 235:1–10. https://doi.org/10.1016/j.colsurfa.2003.12.020

    Article  CAS  Google Scholar 

  18. Ghorab HY, Rizk M, Eldirs F, Abdel Fatah AM (2016) Egyptian rice husk ash as cement replacement material. Cem Wapno Beton 21:169–176

    CAS  Google Scholar 

  19. Riveros I-I, Garza C (1986) Rice husks as a source of high purity silica. J Cryst Growth 75:126–131. https://doi.org/10.1016/0022-0248(86)90233-2

    Article  CAS  Google Scholar 

  20. FAO (2017) Rice market monitor

  21. Sumarni W, Iswari RS, Marwoto P, Rahayu EF (2016) Physical characteristics of chitosan–silica composite of rice husk ash. IOP Conf Ser Mater Sci Eng 107:012039. https://doi.org/10.1088/1757-899x/107/1/012039

    Article  CAS  Google Scholar 

  22. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D (2015) Synthesis and adsorption properties of chitosan–silica nanocomposite prepared by sol–gel method. Nanoscale Res Lett 10:87–96. https://doi.org/10.1186/s11671-014-0722-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai S-M, Yang AJ-M, Chen W-C, Hsiao J-F (2006) The properties and preparation of chitosan/silica hybrids using sol–gel process. Polym Plast Technol Eng 45:997–1003. https://doi.org/10.1080/03602550600726269

    Article  CAS  Google Scholar 

  24. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  25. Elsabee MZ, Morsi RE, Al-Sabagh AM (2009) Surface active properties of chitosan and its derivatives. Colloids Surf B Biointerfaces 74:1–16. https://doi.org/10.1016/j.colsurfb.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  26. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004

    Article  CAS  Google Scholar 

  27. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. https://doi.org/10.1007/978-3-662-33915-2_7

    Article  Google Scholar 

  28. Singh AK, Singh DP, Pandey KK, Singh VN (1988) Wollastonite as adsorbent for removal of Fe(II) from water. J Chem Technol Biotechnol 42:39–47. https://doi.org/10.1002/jctb.280420106

    Article  CAS  Google Scholar 

  29. Hassan HS, Elmaghraby EK (2012) Preparation of graphite by thermal annealing of polyacrylamide precursor for adsorption of Cs(I) and Co(II) ions from aqueous solutions. Can J Chem 90:843–850. https://doi.org/10.1139/V2012-058

    Article  CAS  Google Scholar 

  30. Abdel Moamen OA, Hassan HS, El-Sherif EA (2017) Binary oxide composite adsorbent for copper, nickel and zinc cations removal from aqueous solutions. Desalin Water Treat 82:219–233. https://doi.org/10.5004/dwt.2017.21015

    Article  CAS  Google Scholar 

  31. Boyd GE, Adamson AW, JrLS Myers (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2844. https://doi.org/10.1021/ja01203a066

    Article  CAS  PubMed  Google Scholar 

  32. Yakout SM, Hassan HS (2014) Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions. Molecules 19:9160–9172. https://doi.org/10.3390/molecules19079160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reichenburg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75:589–597. https://doi.org/10.1021/ja01099a022

    Article  Google Scholar 

  34. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318. https://doi.org/10.1016/s0043-1354(01)00447-x

    Article  CAS  PubMed  Google Scholar 

  35. Abdel Raouf MW, El-Kamash AM (2006) Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent. J Radioanal Nucl Chem 267(2):389–395. https://doi.org/10.1007/s10967-006-0060-6

    Article  CAS  Google Scholar 

  36. Atun G, Bilgin B, Kilislioglu A (2002) Kinetics of isotopic exchange between strontium polymolybdate and strontium ions in aqueous solution. Appl Radiat Isot 56:797–803. https://doi.org/10.1016/s0969-8043(02)00052-0

    Article  CAS  PubMed  Google Scholar 

  37. Scheckel KG, Sparks DL (2001) Temperature effects on nickel sorption kinetics at the mineral-water interface. Soil Sci Soc Am J 65:719–728. https://doi.org/10.2136/sssaj2001.653719x

    Article  CAS  Google Scholar 

  38. Moloukhia H, Hegazy WS, Abdel-Galil EA, Mahrous SS (2016) Removal of Eu3+, Ce3+, Sr2+, and Cs+ ions from radioactive waste solutions by modified activated carbon prepared from coconut shells. Chem Ecol 32(4):324–345. https://doi.org/10.1080/02757540.2016.1139089

    Article  CAS  Google Scholar 

  39. Misaelides P, Sarri S, Zamboulis D, Gallios G, Zhuravlev I, Strelko VV (2006) Separation of europium from aqueous solutions using Al3+- and Fe3+-doped zirconium and titanium phosphates. J Radioanal Nucl Chem 268(1):53–58. https://doi.org/10.1556/JRNC.268.2006.1.8

    Article  CAS  Google Scholar 

  40. Granados-Correa F, Vilchis-Granados J, Jiménez-Reyes M, Quiroz-Granados LA (2013) Adsorption behaviour of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite: kinetic, isotherm, and thermodynamic studies. J Chem. https://doi.org/10.1155/2013/751696

    Article  Google Scholar 

  41. Granados-Correa F, Jiménez-Reyes M (2011) Combustion synthesis of BaCO3 and its application for Eu(III) adsorption from aqueous solution. Sep Sci Technol 46(15):2360–2366. https://doi.org/10.1080/01496395.2011.595754

    Article  CAS  Google Scholar 

  42. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mater 123:1–9. https://doi.org/10.1016/j.micromeso.2009.03.043

    Article  CAS  Google Scholar 

  43. Kang MJ, Hahn PS (2004) Adsorption behavior of aqueous Europium on kaolinite under various disposal conditions. Korean J Chem Eng 21(2):419–424. https://doi.org/10.1007/bf02705430

    Article  CAS  Google Scholar 

  44. Yao W, Wu Y, Pang H, Wang X, Yu S, Wang X (2018) In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Sci China Chem 61:1–12. https://doi.org/10.1007/s11426-017-9225-5

    Article  CAS  Google Scholar 

  45. Chunhua X, Yuan M, Caiping Y (2011) Characters of kinetic and equilibrium of adsorption of Eu(III) by an cation exchange resin. Iran J Chem Chem Eng 30(1):97–105

    Google Scholar 

  46. Xiong C, Zheng Z (2010) Evaluation of D113 cation exchange resin for the removal of Eu(III) from aqueous solution. J Rare Earth 28(6):862–867. https://doi.org/10.1016/s1002-0721(09)60231-3

    Article  CAS  Google Scholar 

  47. Negrea A, Gabor A, Davidescu CM, Ciopec M, Negrea P, Duteanu N, Barbulescu A (2018) Rare earth elements removal from water using natural polymers. Sci Rep UK 8:316–326. https://doi.org/10.1038/s41598-017-18623-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dakroury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakroury, G.A., Abo-Zahra, S.F., Hassan, H.S. et al. Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. J Radioanal Nucl Chem 323, 439–455 (2020). https://doi.org/10.1007/s10967-019-06951-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06951-6

Keywords

Navigation