Skip to main content
Log in

Adsorption properties of Pseudomonas monteilii for removal of uranium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Pseudomonas monteilii. YL-1 was cultured from deep sea sediment to remove uranium from aqueous solution. Different influence factors on uranium adsorption efficiency were investigated. The kinetic model of Pseudomonas monteilii could be described by the pseudo-second-order kinetic model, and the Freundlich isotherm model could fit the experiment data well, indicating that the adsorption was multilayer adsorption. The adsorption was spontaneous and endothermic reaction by thermodynamic analysis. The functional groups of Pseudomonas monteilii such as hydroxy, carboxyl, amino and amide may act with UO22+ by chemisorption or strong complexation in the process of uranium adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058

    Article  CAS  Google Scholar 

  2. Chen S, Hong J, Yang H, Yang J (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126(4):253–258

    Article  CAS  Google Scholar 

  3. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101(3):267–276

    Article  CAS  Google Scholar 

  4. Augustine S, Gagnaire B, Adam-Guillermin C, Kooijman SALM (2012) Effects of uranium on the metabolism of zebrafish, Danio rerio. Aquat Toxicol 118–119(2):9–26

    Article  Google Scholar 

  5. Bampaiti A, Misaelides P, Noli F (2015) Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff. J Radioanal Nucl Chem 303(3):2233–2241

    CAS  Google Scholar 

  6. Semião AJC, Rossiter HMA, Schäfer AI (2010) Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. J Membr Sci 348(1):174–180

    Article  Google Scholar 

  7. Daher AM, Wanees SA, Kellah HMA, Ali AH (2014) Removal of uranium from sulfate leach liquor of salcrete deposits using tri-n-octyl amine. J Radioanal Nucl Chem 299(1):493–499

    Article  CAS  Google Scholar 

  8. Gao MW, Zhu GR, Wang XH, Wang P, Gao CJ (2015) Preparation of short channels SBA-15-PVC membrane and its adsorption properties for removal of uranium(VI). J Radioanal Nucl Chem 304(2):675–682

    Article  CAS  Google Scholar 

  9. Amirnia S, Ray MB, Margaritis A (2015) Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem Eng J 264:863–872

    Article  CAS  Google Scholar 

  10. Li S, Wang X, Huang Z, Du L, Tan Z, Fu Y, Wang X (2016) Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. J Radioanal Nucl Chem 308(3):877–886

    Article  CAS  Google Scholar 

  11. Silva JIR, Ferreira ACDM, Costa ACAD (2009) Uranium biosorption under dynamic conditions: preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg. J Radioanal Nucl Chem 279(3):909–914

    Article  Google Scholar 

  12. Jing B, Yao H, Fan F, Lin M, Zhang L, Ding H, Lei F, Wu X, Li X, Guo J (2010) Biosorption of uranium by chemically modified Rhodotorula glutinis. J Environ Radioact 51(6–7):382–387

    Google Scholar 

  13. Wang JS, Hu XJ, Wang J, Bao ZL, Xie SB, Yang JH (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus. Biochem Eng J 51(2):19–23

    Article  Google Scholar 

  14. Sar P, Kazy SK, D’Souza SF (2004) Radionuclide remediation using a bacterial biosorbent. Int Biodeterior Biodegrad 54(3):193–202

    Article  CAS  Google Scholar 

  15. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Biores Technol 70(1):95–104

    Article  CAS  Google Scholar 

  16. Sangi MR, Shahmoradi A, Zolgharnein J, Azimi GH, Ghorbandoost M (2008) Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J Hazard Mater 155(3):513–522

    Article  CAS  Google Scholar 

  17. Sag Y, Kutsal T (2001) Recent trends in the biosorption of heavy metals: a review. Biotechnol Bioprocess Eng 6(6):376–385

    Article  CAS  Google Scholar 

  18. Freitas OM, Martins RJ, Deleruematos CM, Boaventura RA (2008) Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling. J Hazard Mater 153(1–2):493–501

    Article  CAS  Google Scholar 

  19. Zhu W, Liu Z, Chen L, Dong Y (2011) Sorption of uranium(VI) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, temperature and humic acid. J Radioanal Nucl Chem 289(3):781–788

    Article  CAS  Google Scholar 

  20. Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303(1):1–10

    Article  Google Scholar 

  21. Leyva-Ramos R, Bernal-Jacome LA, Acosta-Rodriguez I (2005) Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob. Sep Purif Technol 45(1):41–49

    Article  CAS  Google Scholar 

  22. Bursali EA, Merdivan M, Yurdakoc M (2009) Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent: sorption behaviour of uranium(VI) and thorium(IV) on low-cost abundantly available sorbent. J Radioanal Nucl Chem 283(2):471–476

    Article  Google Scholar 

  23. Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M (2010) Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. J Phys Chem B 114(20):6779–6785

    Article  CAS  Google Scholar 

  24. Khani MH, Keshtkar AR, Ghannadi M, Pahlavanzadeh H (2008) Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J Hazard Mater 150(3):612–618

    Article  CAS  Google Scholar 

  25. Wang JS, Hu XJ, Liu YG, Xie SB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101(6):504–508

    Article  CAS  Google Scholar 

  26. Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliò F (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60(2):129–141

    Article  CAS  Google Scholar 

  27. Ozdemir G, Ceyhan N, Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Biores Technol 96(15):1677–1682

    Article  CAS  Google Scholar 

  28. Hou D, Chen F, Yang SK, Yan XM, Long W, Zhang W, Jia XH, Tan N (2016) Study on uranium(VI) biosorption of marine-derived fungus treated by cetyltrimethyl ammonium bromide. J Radioanal Nucl Chem 307(2):1–8

    Article  Google Scholar 

  29. Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146(1–2):362–371

    Article  Google Scholar 

  30. Arica MY, Bayramoglu G, Yilmaz M, Bektaş S, Genç O (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater 109(1–3):191–199

    Google Scholar 

  31. Salem IA, El-Maazawi MS (2000) Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 41(8):1173–1180

    Article  CAS  Google Scholar 

  32. Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106(2):8–19

    Article  CAS  Google Scholar 

  33. Peng G, Ding D, Hu N, Yang Y, Wang X (2011) Adsorption characteristics of uranium by Saccharomyces cerevisiae by chemical modification. Ciesc Journal 62(11):3201–3206

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2015ZX07205-003); the China Ocean Mineral Resources Research & Development Program (DY125-15-T-08); the National Natural Science Foundation of China (21176026, 21176242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yali Feng or Haoran Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Feng, Y., Li, H. et al. Adsorption properties of Pseudomonas monteilii for removal of uranium from aqueous solution. J Radioanal Nucl Chem 315, 243–250 (2018). https://doi.org/10.1007/s10967-017-5658-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5658-3

Keywords

Navigation