Skip to main content
Log in

Study on alpha cup technique for monitoring of soil radon levels

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Determination of radon concentrations in soil usually requires the accumulation of many measurements over a large area. In this study, an alpha cup technique that provides a cumulative result for adsorption of radon progeny over time was investigated. In addition, the performance of measurements were evaluated. To avoid the impacts of temperature and humidity, a new arithmetic correction was explored. Finally, we also investigated the effect of burial time of the alpha cup on soil radon measurements. Experiments showed that the alpha cup technique can satisfy the demands of soil radon measurements in efficiency, accuracy, reliability, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Junzhe P, Guizhi Zh et al (2013) Establishment and verification of theoretical model of fast measurement method for potential radon concentration in soil. At Energy Sci Technol 47:860–865. doi:10.7538/yzk.2013.47.05.0860 (in Chinese)

    Google Scholar 

  2. Yongfei J, Jun D et al (2010) Research and application of underground coal fire radon exploration. J Xian Univ Sci Technol 30:647–650. doi:10.13800/j.cnki.xakjdxxb.2010.06.015 (in Chinese)

    Google Scholar 

  3. AI-Azmi D (2009) The use of soil gas as radon source in radon chambers. Radiat Meas 44:306–310. doi:10.1016/j.radmeas.2009.03.013

    Article  Google Scholar 

  4. Rangquan H, Jianming H (2015) Soil radon concentration measurement applied in Guangzhou karst ground collapse, land subsidence geological hazard survey. Prog Geo 30:975–982. doi:10.6038/pg20150267 (in Chinese)

    Google Scholar 

  5. Zoran M, Savastru R et al (2012) Monitoring of radon anomalies in South-Eastern part of Romania for earthquake surveillance. J Radioanal Nucl Chem 293:769–781. doi:10.1007/s10967-012-1780-4

    Article  CAS  Google Scholar 

  6. Zhengyong L (2000) Aerosol science introduction. Atomic Energy Science Press, Beijing

    Google Scholar 

  7. Yanliang Zh, Xiuhong P et al (2003) Soil radon measurement applications in fault detection. Miner Univ. doi:10.16461/j.cnki.1000-4734.2013.s2.065 (in Chinese)

    Google Scholar 

  8. Sima O, Luca A et al (2017) Monte Carlo simulation of air sampling methods for the measurement of radon decay products. Appl Radiat Isot 126:4–8. doi:10.1016/j.apradiso.2017.02.032

    Article  CAS  Google Scholar 

  9. Yang Z, Chen B et al (2017) A new approach for discriminative measurements of different components of external ionizing radiation. J Environ Radioact. doi:10.1016/j.jenvrad.2016.07.023

    Google Scholar 

  10. Gilad E, Dubi C et al (2017) Dead time corrections using the backward expolation method. Nucl Instrum Methods A 854:53–60. doi:10.1016/j.nima.2017.02.026

    Article  CAS  Google Scholar 

  11. Jigang A (1995) Ionizing radiation detector. Atomic Energy Science Press, Beijing

    Google Scholar 

  12. Abdelaal AM, Attalla EM et al (2017) Dose estimation outside radiation field using Pinpoint and Semiflex ionization chamber detectors. Radiat Phys Chem 139:120–125. doi:10.1016/j.radphyschem.2017.04.006

    Article  CAS  Google Scholar 

  13. Ginzburg D (2017) Ionisation chamber for measurement of pulsed photon radiation fields. Radiat Prot Dosim 174:297–301. doi:10.1093/rpd/ncw145

    CAS  Google Scholar 

  14. Gaudefroy L, Roger T et al (2017) A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments. Nucl Instrum Methods A 855:133–139. doi:10.1016/j.nima.2017.02.071

    Article  CAS  Google Scholar 

  15. Erdogan M, Ozdemir F et al (2013) Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey. Iso Environ Health Stud 49:567–574. doi:10.1080/10256016.2013.815182

    Article  CAS  Google Scholar 

  16. Weicheng D, Yi W et al (2010) A practical soil radon (222Rn) measurement method. Nucl Sci Teches 21:177–181

    Google Scholar 

  17. Watson DJ, Strom DJ (2011) Radiation doses to members of the US population from ubiquitous radionuclides in the body: part 3, results, variability and uncertainty. Health Phys 100:402–416. doi:10.1097/HP.0b013e318203d9d0

    Article  CAS  Google Scholar 

  18. Papp B, Szakacs A et al (2010) Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones. Geofluids 10:586–593. doi:10.1111/j.1468-8123.2010.00318.x

    Article  CAS  Google Scholar 

  19. Chanyotha S, Burnett WC et al (2010) Experience in using radon and thoron data to solve environmental and water problems. Radiat Prot Dosim 141:374–378. doi:10.1093/rpd/ncq225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sponsored by National Natural Science Foundation of China, Number: 41774140. Sponsored by key projects of Sichuan Provincial Education Department, Number: 14ZA0064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, WC., He, L., Huang, HQ. et al. Study on alpha cup technique for monitoring of soil radon levels. J Radioanal Nucl Chem 314, 1635–1641 (2017). https://doi.org/10.1007/s10967-017-5519-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5519-0

Keywords

Navigation