Skip to main content
Log in

Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this article, we report a facile one-pot method to prepare sulfonated graphene oxide (GOS) via vapor–solid transfer reaction of graphene oxide (GO). The synthesized GOS were characterized and investigated as an adsorbent for the adsorption of U(VI) from aqueous solutions. The results indicated that the adsorption of U(VI) was strongly dependent on pH and independent of ionic strength. The adsorption process followed the pseudo-second-order kinetics and the adsorption isotherm agreed well with the Langmuir model, having a maximum adsorption capacity of 309.09 mg g−1. Thermodynamic parameters indicated that the adsorption reaction was an endothermic and spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B 7:297–317

    Article  CAS  Google Scholar 

  2. Chapman N, Hooper A (2012) The disposal of radioactive wastes underground. Proc Geol Assoc 123:46–63

    Article  Google Scholar 

  3. Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Characterization of uranium (VI) sorption by organobentonite. Appl Surf Sci 256:5416–5421

    Article  CAS  Google Scholar 

  4. Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  5. Xie SB, Yang J, Chen C, Zhang XJ, Wang QL, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  6. Orloff KG, Mistry K, Charp P, Metcalf S, Marino R, Shelly T, Melaro E, Donohoe AM, Jones RL (2004) Human exposure to uranium in groundwater. Environ Res 94:319–326

    Article  CAS  Google Scholar 

  7. Banerjee C, Dudwadkar N, Tripathi SC, Gandhi PM, Grover V, Kaushik CP, Tyagi AK (2014) Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70

    Article  CAS  Google Scholar 

  8. Bruno J, De Pablo J, Duro L, Figuerola E (1995) Experimental study and modeling of the U(VI)-Fe(OH)3 surface precipitation/coprecipitation equilibria. Geochim Cosmochim Acta 59:4113–4123

    Article  CAS  Google Scholar 

  9. Sheng GD, Dong HP, Li YM (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact 113:108–115

    Article  CAS  Google Scholar 

  10. Donat R, Esen K, Cetisli H, Aytas S (2008) Adsorption of uranium (VI) onto Ulva sp.-sepiolite composite. J Radioanal Nucl Chem 279:253–261

    Article  Google Scholar 

  11. Ilton ES, Wang ZM, Boily JF, Qafoku O, Rosso KM, Smith SC (2012) The effect of pH and time on the extractability and speciation of uranium (VI) sorbed to SiO2. Environ Sci Technol 46:6604–6611

    Article  CAS  Google Scholar 

  12. Şimşek S, Ulusoy U (2012) Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl Chem 292:41–51

    Article  Google Scholar 

  13. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M (2014) The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21:684–694

    Article  CAS  Google Scholar 

  14. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  15. Li ZJ, Chen F, Yuan LY, Liu YL, Zhao YL, Chai ZF, Shi WQ (2012) Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  16. Li D, Kaner RB (2008) Graphene-based materials. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  17. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  18. Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34:2017–2023

    Article  CAS  Google Scholar 

  19. He HY, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56

    Article  CAS  Google Scholar 

  20. Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  21. Chen YQ, Chen LB, Bai H, Li L (2013) Graphene oxide—chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001

    Article  CAS  Google Scholar 

  22. Kumar A, Kakan SS, Rajesh N (2013) A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem Eng J 230:328–337

    Article  CAS  Google Scholar 

  23. Li J, Zhang SW, Chen CL, Zhao GX, Yang X, Li JX, Wang XK (2012) Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4:4991–5000

    Article  CAS  Google Scholar 

  24. Lei YL, Chen F, Luo YJ, Zhang L (2014) Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. Chem Phys Lett 593:122–127

    Article  CAS  Google Scholar 

  25. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  26. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  27. Zhao GX, Wen T, Yang X, Yang SB, Liao JL, Hu J, Wang XK (2012) Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  28. Atun G, Ortaboy S (2009) Adsorptive removal of uranium from water by sulfonated phenol-formaldehyde resin. J Appl Polym Sci 114:3793–3801

    Article  CAS  Google Scholar 

  29. Zhang ZB, Yu XF, Cao XH, Hua R, Li M, Liu YH (2014) Adsorption of U (VI) from aqueous solution by sulfonated ordered mesoporous carbon. J Radioanal Nucl Chem 30:821–830

    Article  Google Scholar 

  30. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23:3959–3963

    Article  CAS  Google Scholar 

  31. Zhao GX, Li JX, Wang XK (2011) Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chem Eng J 173:185–190

    Article  CAS  Google Scholar 

  32. Hou HY, Hu XH, Liu XX, Hu W, Meng RJ, Li L (2015) Sulfonated graphene oxide with improved ionic performances. Ionics 7:1919–1923

    Article  Google Scholar 

  33. Wu S, Zhang K, Wang X, Jia Y, Sun B, Luo T, Meng F, Jin Z, Lin D, Shen W, Kong L, Liu J (2015) Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem Eng J 262:1292–1302

    Article  CAS  Google Scholar 

  34. Xu Z, Sun HY, Zhao XL, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25:188–193

    Article  CAS  Google Scholar 

  35. Wei M, Liao JL, Liu N, Zhang D, Kang HJ, Yang YY, Jin JN (2007) Interaction between uranium and humic acid (I): adsorption behaviors of U (VI) in soil humic acids. Nucl Sci Tech 18:287–293

    Article  CAS  Google Scholar 

  36. Han YQ, Shen MX, Wu Y, Zhu JJ, Ding B, Tong H, Zhang XG (2013) Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synth Met 172:21–27

    Article  CAS  Google Scholar 

  37. Zhao GX, Ren XM, Gao X, Tan XL, Li JX, Chen CL, Huang YY, Wang XK (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40:10945–10952

    Article  CAS  Google Scholar 

  38. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290

    Article  CAS  Google Scholar 

  39. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CCM (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2:3092–3099

    Article  CAS  Google Scholar 

  40. Chen SP, Hong JX, Yang HX, Yang JZ (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258

    Article  CAS  Google Scholar 

  41. Cheng HX, Zeng KF, Yu JT (2013) Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite. J Radioanal Nucl Chem 298:599–603

    Article  CAS  Google Scholar 

  42. Kang MJ, Han BE, Hahn PS (2002) Precipitation and adsorption of uranium (VI) under various aqueous conditions. Environ Eng Res 7:149–157

    Article  Google Scholar 

  43. Cho HR, Jung EC, Jee KY (2008) Probe beam detection of laser-induced breakdown for measuring solubility of actinide compounds. Jpn J Appl Phys 47:3530

    Article  CAS  Google Scholar 

  44. Kramer-Schnabel U, Bischoff H, Xi RH, Marx G (1992) Solubility products and complex formation equilibria in the systems uranyl hydroxide and uranyl carbonate at 25 and and I = 0.1 M. Radiochim Acta 56:183–188

    Article  CAS  Google Scholar 

  45. Meinrath G, Kato Y, Kimura T, Yoshida Z (1996) Solid-aqueous phase equilibria of uranium (VI) under ambient conditions. Radiochim Acta 75:159–168

    CAS  Google Scholar 

  46. Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334

    Article  CAS  Google Scholar 

  47. Montavon G, Rabung T, Geckeis H, Grambow B (2004) Interaction of Eu(III)/Cm(III) with alumina-bound poly (acrylic acid): sorption, desorption, and spectroscopic studies. Environ Sci Technol 38:4312–4318

    Article  CAS  Google Scholar 

  48. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U (VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  Google Scholar 

  49. Sheng GD, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang XK, Li H, Huang YY (2016) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99:123–130

    Article  CAS  Google Scholar 

  50. Sheng GD, Hu J, Li H, Li JX, Huang YY (2016) Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere 148:227–232

    Article  CAS  Google Scholar 

  51. Wang Y, Wang ZS, Gu Z, Yang JJ, Liao JL, Yang YY, Liu N, Tang J (2015) Uranium (VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Chem 304:1329–1337

    Article  CAS  Google Scholar 

  52. Langmuir BI (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. 1. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  53. Freundlich HMF (1906) Uber die adsorption in lasugen. Phys Chem 57:385–4701

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2014CB460604), the National Natural Science Foundation of China (Grant Nos. 21301028, 11475044, 41461070, 21561002), the Program for Changjiang Scholars and Innovative Research Team in University (Grant NO. IRT13054), the Science and Technology Support Program of Jiangxi Province (Grant Nos. 20141BBG70001, 20151BBG70010), the Advanced Science and Technology Innovation Team Program of Jiangxi Province (Grant NO. 20142BCB24006), the Innovation Team Program of Jiangxi Provincial Department of Science and Technology (Grant No. 2014BCB24006), and the Project of East China Institute of Technology Graduate Student Innovation Fund (Grant Nos. DHYC2014025, DHYC2015011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-hong Cao or Yun-hai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zb., Qiu, Yf., Dai, Y. et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions. J Radioanal Nucl Chem 310, 547–557 (2016). https://doi.org/10.1007/s10967-016-4813-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4813-6

Keywords

Navigation