Skip to main content
Log in

Study of charged particle activation analysis (I): determination sensitivity for single element samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Charged particle activation analysis (CPAA) utilizing an 8 MeV proton beam has been studied for general elemental quantification. We accumulate the reaction cross section and nuclear decay data by referring to nuclear database supplied by National Nuclear Data Center in Brookhaven National Laboratory. By using the database we have derived determination sensitivity of single element samples for each nuclide. The result indicates that, while the determination sensitivity tends to decrease gradually as the target nucleus becomes heavy, the CPAA analysis is possible over the whole elements including the heavy nuclear region. It may be concluded that CPAA can be applied to most of the stable nuclei and is one of the alternative methods to neutron activation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ricci E, Hahn RL (1965) Theory and experiment in rapid, sensitive helium-3 activation analysis. Anal Chem 37:742–748

    Article  CAS  Google Scholar 

  2. Sanni AO, Roche NG, Dowell HJ, Schweikert EA, Ramsey TH (1984) On the determination of carbon and oxygen impurities in silicon by 3He activation analysis. J Radioanal Nucl Chem 81:125–129

    Article  CAS  Google Scholar 

  3. Valladon M, Debrun JL (1977) Determination of oxygen in metals and semiconductors by means of the 16O(T, n)18F reaction. J Radioanal Nucl Chem 39:385–395

    Article  CAS  Google Scholar 

  4. Debefve P, Do HP, Friedli C, Lerch P (1981) Trace determination of oxygen in gold–copper alloys and in high purity gold using 3He and 4He activation analysis. J Radioanal Nucl Chem 64:213–223

    Article  Google Scholar 

  5. Bottger ML, Birnstein D, Helbig W, Niese S (1980) Removal of disturbances in carbon determination by activation analysis for lowering the detection limit. J Radioanal Nucl Chem 58:173–181

    Article  Google Scholar 

  6. Yagi M, Masumoto K (1985) Simultaneous determination of Ti, Cr, Fe, Cu, Ga and Zr in aluminium alloys by charged-particle activation analysis using the internal standard method. J Radioanal Nucl Chem 91:379–387

    Article  CAS  Google Scholar 

  7. Masumoto K, Yagi M (1985) Determination of strontium in biological materials by charged-particle activation analysis using the stable isotope dilution method. J Radioanal Nucl Chem 91:369–378

    Article  CAS  Google Scholar 

  8. Yagi M, Masumoto K, Muto M (1986) An automatic gamma-ray spectrometer equipped with a micro-robot for sample changing. J Radioanal Nucl Chem 98:31–38

    Article  CAS  Google Scholar 

  9. Masumoto K, Yagi M (1987) Simultaneous determination of P, Cl, K and Ca in several control serums by alpha-particle activation analysis using the internal standard method. J Radioanal Nucl Chem 109:449–458

    Article  CAS  Google Scholar 

  10. Yagi M, Masumoto K (1987) Instrumental charged-particle activation analysis of several selected elements in biological materials using the internal standard method. J Radioanal Nucl Chem 111:359–369

    Article  CAS  Google Scholar 

  11. Masumoto K, Yagi M (1989) Determination of phosphorus in low-alloy steels by alpha-particle activation analysis. J Radioanal Nucl Chem 130:243–250

    Article  CAS  Google Scholar 

  12. Shikano K, Yonezawa H, Shigematsu T (1993) Charged particle activation analysis of light elements at sub-ppb level. J Radioanal Nucl Chem 167:81–88

    Article  Google Scholar 

  13. Masumoto K, Hara M, Hasegawa D, Iino E, Yagi M (1997) Photon and proton activation analysis of iron and steel standards using the internal standard method coupled with the standard addition method. J Radioanal Nucl Chem 217:247–253

    Article  CAS  Google Scholar 

  14. Matsumura H, Masumoto K, Toyoda A, Kinoshita N (2008) List-mode coincidence data analysis for highly selective and low background detection of gamma-nuclides in activated samples. J Radioanal Nucl Chem 278:733–738

    Article  CAS  Google Scholar 

  15. Kumada H, Matsumura A, Sakurai H, Sakae T, Yoshioka M, Kobayashi H, Matsumoto H, Kiyanagi Y, Shibata T, Nakashima H (2014) Project for the development of the linac based NCT facility in University of Tsukuba. Appl Radiat Isot 88:211–215

    Article  CAS  Google Scholar 

  16. Experimental nuclear reaction data (EXFOR). http://www.nndc.bnl.gov/exfor/exfor.htm. Accessed 8 July 2015

  17. NuDat 2.6. http://www.nndc.bnl.gov/nudat2/. Accessed 8 July 2015

  18. JCAC report. https://www.jcac.or.jp/site/library/. Accessed 8 July 2015

  19. Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Suishida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278:257–262

    Article  CAS  Google Scholar 

  20. Hatsukawa Y, Oshima M, Hayakawa T, Toh Y, Shinohara N (2002) Application of multiparameter coincidence spectrometry using a Ge detectors array to neutron activation analysis. Nucl Instrum Methods A 482:328–333

    Article  CAS  Google Scholar 

  21. Toh Y, Oshima M, Hatsukawa Y, Hayakawa T, Shinohara N (2001) Comparison method for neutron activation analysis with γ–γ matrix. J Radioanal Nucl Chem 250:373–376

    Article  CAS  Google Scholar 

  22. Oshima M, Toh Y, Hatsukawa Y, Hayakawa T, Shinohara N (2002) A high-sensitivity and non-destructive trace element analysis based on multiple gamma-ray detection. J Nucl Sci Technol 39:292–294

    Article  CAS  Google Scholar 

  23. Oshima M, Toh Y, Kimura A, Ebihara M, Oura Y, Itoh Y, Sawahata H, Matsuo M (2007) Multiple prompt gamma-ray analysis and construction of its beam line. J Radioanal Nucl Chem 271:317–321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. K. Masumoto, M. Matsuo, T. Otsuki, and H. Matsue for useful discussions regarding the activation analysis. They also wish to thank Drs. M. Asai and K. Tsukada for their kind encouragement and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oshima.

Additional information

W. Muramatsu: on leave from NSC Tsuruga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, M., Yamaguchi, Y., Muramatsu, W. et al. Study of charged particle activation analysis (I): determination sensitivity for single element samples. J Radioanal Nucl Chem 308, 711–719 (2016). https://doi.org/10.1007/s10967-015-4505-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4505-7

Keywords

Navigation