Skip to main content
Log in

Sorption of radionuclides and metals to graphene oxide and magnetic graphene oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) and two magnetic graphene oxide (MGO) composites with a different amount of magnetite were synthesized, characterized and used in sorption experiments. The effect of pH on sorption of Am(III) and Pu(IV) isotopes as well as Co(II), Ni(II), Cu(II) and Pb(II) to GO and MGO was studied in equilibrium and kinetic experiments. The adsorption capacities varied from 30 to 574 mg g−1 while rate constants ranged from 0.29 to 0.46 min−1 and increased in the following order Co, Cu, Pb and Ni. Large variations in the uptake of studied elements by adsorbents depending on initial and final pH of solutions were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Techn 42(16):5843–5859

    Article  CAS  Google Scholar 

  3. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 20:1–19

    Google Scholar 

  4. Ivanovskii AL (2012) Graphene-based and graphene-like materials. Russ Chem Rev 81:571–605

    Article  Google Scholar 

  5. Romanchuk AYu, Slesarev AS, StN Kalmykov, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  6. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nature Nanotechn 4(4):217–224

    Article  CAS  Google Scholar 

  7. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  CAS  Google Scholar 

  8. Dreyer DR, Park S, Bielawski ChW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  9. Singh V, Joung D, Lei Zhai, Soumen D, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Progr Mat Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  10. Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Engin J 226:336–347

    Article  CAS  Google Scholar 

  11. Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren MM (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Coll Interf Sci 195–196:19–40

    Article  Google Scholar 

  12. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-Layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  13. Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R, Kuang Y (2013) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pol 224:1372–1378

    Article  Google Scholar 

  14. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689

    Article  CAS  Google Scholar 

  15. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  16. SunY Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of Radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  Google Scholar 

  17. Kumar N, Seminario JM (2013) Design of nanosensors for fissile materials in nuclear waste water. J Phys Chem C 117:24033–24041

    Article  CAS  Google Scholar 

  18. Yamaguchi D, Furukawa K, Takasuga M, Watanabe K (2014) A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident. Scientific Reports 4 : 6053. doi: 10.1038/srep06053

  19. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Materials 211–212:317–331

    Article  Google Scholar 

  20. Lujanienė G, Meleshevych S, Kanibolotskyy V, Šapolaitė J, Strelko V, Remeikis V, Oleksienko O, Ribokaitė K, Ščiglo T (2009) Application of inorganic sorbents for removal of Cs, Sr, Pu and Am from contaminated solutions. J Radioanal Nucl Chem 282:787–791

    Article  Google Scholar 

  21. Yusan S, Korzhynbayeva K, Aytas S, Tazhibayeva S, Musabekov K (2014) Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content. J Alloys Compd 608:8–13

    Article  CAS  Google Scholar 

  22. Mi X, Huang G, Xie W, Wang W, Liu Y, Jianping Gao (2012) Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50:4856–4864

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1341

    Article  CAS  Google Scholar 

  24. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 50:4209–4219

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  26. Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49

    Article  Google Scholar 

  27. Lujanienė G, Beneš P, Štamberg K, Šapolaitė J, Vopalka D, Radžiūtė E, Ščiglo T (2010) Effect of natural clay components on sorption of Cs, Pu and Am by the clay. J Radioanal Nucl Chem 286:353–359

    Article  Google Scholar 

  28. Thomas MF, Johnson CE (1986) Mossbauer spectroscopy of magnetic solids. In: Dickson DPE, Berry FJ (eds) Mössbauer spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  29. Si Y, Samulski ET (2008) Synthesis of water soluble grapheme. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  30. Wenbao Jis W, Lu S (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean J Chem Eng 31(7):1265–1270

    Article  Google Scholar 

  31. Xing HT, Chen JH, Sun X, Huang YH, Su ZB, Hu SR, Weng W, Li SX, Guo HX, Wu WB, He YS, Li FM, Huang Y (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem Eng J 263:280–289

    Article  CAS  Google Scholar 

  32. Sheng G, Yang S, Sheng J, Zhao D, Wang X (2011) Influence of solution chemistry on the removal of Ni(II) from aqueous solution to titanate nanotubes. Chem Eng J 168:178–182

    Article  CAS  Google Scholar 

  33. Li J, Zhang S, Chen C (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mat Interf 4(9):4991–5000

    Article  CAS  Google Scholar 

  34. Hu X-J, Liu Y-G, Wang H (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep Purif Technol 108:189–195

    Article  CAS  Google Scholar 

  35. Nandi D, Basu T, Debnath S, Ghosh AK, De A, Ghosh UC (2013) Mechanistic insight for the sorption of Cd(II) and Cu(II) from aqueous solution on magnetic mn-doped Fe(III) oxide nanoparticle implanted graphene. J Chem Eng Data 58(10):2809–2818

    Article  CAS  Google Scholar 

  36. Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MAR, Sood AK (2014) Grapheneoxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mat Interf 6:17426–17436

    Article  CAS  Google Scholar 

  37. Zhang Y, Yan L, Xu W (2014) Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq 191:177–182

    Article  CAS  Google Scholar 

  38. Hur J, Shin J, Yoo J, Seo Y-S (2015) Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. Sci World J 2015:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Lujanienė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lujanienė, G., Šemčuk, S., Kulakauskaitė, I. et al. Sorption of radionuclides and metals to graphene oxide and magnetic graphene oxide. J Radioanal Nucl Chem 307, 2267–2275 (2016). https://doi.org/10.1007/s10967-015-4461-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4461-2

Keywords

Navigation