Skip to main content
Log in

On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural and fallout radioactivity were estimated in surface soil samples collected around a natural high background radiation area (NHBRA) at Odisha, India using high resolution gamma ray spectrometry. Radiological characterization of the surface soil samples was done by the estimation of radiation hazard indices e.g. external absorbed gamma dose rate (D), radium equivalent activity (Ra eq) and activity concentration index (I). The estimated total absorbed gamma dose rate ranged between 46.2 and 964.2 nGy/h with an average of 341.4 nGy/h, higher than the global average of 58 nGy/h but compared with the other reported NHBRA in India and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2008. Sources and effects of ionizing Radiation. Report to the General Assembly with Annexes, United Nations, New York

  2. Lee MH, Lee CW (1999) Determination of 137Cs, 90Sr and fallout Pu in the volcanic soil of Korea. J Radioanal Nucl Chem 239:471–476

    Article  CAS  Google Scholar 

  3. UNSCEAR (1988) United Nations scientific committee on the effects of atomic radiation sources and effects of ionizing radiation. United Nations, New York

  4. Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233

    Article  CAS  Google Scholar 

  5. Mishra UC (1993) Exposure due to the high natural radiation background and radioactive springs around the world. In: Proceedings of the international conference on high level natural radiation areas ramsar Iran 1990 IAEA Publication Series, IAEA, Vienna, p 29

  6. Mohanty AK, Das SKK, Van V, Sengupta D, Saha SK (2003) Radiogenic heavy minerals in Chhatrapur beach placer deposit of Orissa southeastern coast of India. J Radioanal Nucl Chem 258(2):383–389

    Article  CAS  Google Scholar 

  7. Indian Bureau of Mines (IBM) (1997) Indian minerals year book. 2 India 394

  8. International Atomic Energy Agency IAEA (1989) Measurement of radionuclides in food and environment. Technical Reports Series no. 295 IAEA, Vienna

  9. Popek EM (2003) Sampling and analysis of environmental chemical pollutants. Academic Press Elsevier, Burlington

    Google Scholar 

  10. Fernando R, Roque R, Boggiani A, Ce´sar P, Jean-Marie F (2001) Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra Bodoquena and Pantanal do Miranda, Mato Grosso du Sul State, and central Brazil. Appl Radiat Isot 54:153–173

    Article  Google Scholar 

  11. Mohapatra S, Sahoo SK, Kumar AV, Patra AC, Lenka P, Dubey JS, Thakur VK, Tripathi RM, Puranik VD (2013) Distribution of NORM and 137Cs in soils of Visakhapatnam region, Eastern India and associated Radiation Dose. Radiat Protec Dosim 157(1):95–104

    Article  CAS  Google Scholar 

  12. Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD (2012) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. DOI, J Radioanal Nucl Chem. doi:10.1007/s10967-012-1992-7

    Google Scholar 

  13. ICRP (1991) Recommendations of the International Commission of Radiological Protection. ICRP Publication 60. Ann ICRP 21:1–3

    Article  Google Scholar 

  14. Al-Masri MS, Amin Y, Hassan M, Ibrahim S, Kalili HS (2006) External gamma dose to Syrian population based on themeasurement of gamma-emitter in soils. J Radioanal Nucl Chem 267:337–343

    Article  CAS  Google Scholar 

  15. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-product. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  16. El-Arabi AM (2005) Natural radioactivity in sand used in thermal therapy at the Red Sea Coast. J Environ Radioact 81:11–19

    Article  CAS  Google Scholar 

  17. European Commission (2000) Radiological protection principles concerning the natural radioactivity of building materials. Radiat Prot No. 112

  18. Chakrabarty A, Tripathi RM, Puranik VD (2009) Occurrences of norms and 137Cs in soils of the Singhbhum region of eastern India and associated radiation hazard. Radioprotection 44(1):55–68

    Article  CAS  Google Scholar 

  19. Reddy VK, Reddy ChG, Vidya Sagar K, Reddy DYP, Reddy RK (2012) Environmental radioactivity studies in the proposed Lambapur and Peddagattu uranium mining areas of Andhra Pradesh, India. Radiat Protect Dosim 151(2):290–298

    Article  CAS  Google Scholar 

  20. Sahoo SK, Mohapatra S, Sumesh CG, Sethy NK, Chakrabarty Patra A, Pillay RH, Khan AH, Tripathi RM, Puranik VD (2010) Natural radioactivity in road side soil along Mosabani-Jamshedpur road –a mineralized and mining region, Jharkhand and associated risk. Radiat Prot Dosim. doi:10.1093/rpd/ncq111

  21. Vijayan V, Behera SN (1999) Study of natural radioactivity in soils of Bhubaneswar. In: Proceedings of the eighth national symposium on environment, indira gandhi centre for atomic research, Kalpakkam, 22–25 June , pp 146–147

  22. Mishra UC, Sadasivan S (1971) Natural radioactivity levels in Indian soils. J Sci Ind Res 30:59–62

    CAS  Google Scholar 

  23. Baeza A, Del-Rio M, Miro C (1992) Natural radioactivity in soils in the province of Caceres (Spain). Radiat Prot Dosim 45(1/4):261–263

    CAS  Google Scholar 

  24. Bellia S, Brai M, Hauser S, Puccio P, Rizzo AS (1997) Natural radioactivity in a volcanic island Ustica, Southern Italy. App Radiat Isot 48:287–293

    Article  CAS  Google Scholar 

  25. Martinez-Aguirre A (1997) Radioactivity impact of phosphate ore processing in a wet marshland in southwestern Spain. J Environ Radioact 34:45–57

    Article  CAS  Google Scholar 

  26. Karahan G, Bayulken A (2000) Assessment of gamma dose rates around Istanbul (Turkey). J Environ Radioact 47:213–221

    Article  CAS  Google Scholar 

  27. Yang Y, Wu X, Jiang Z, Wang W, Lu J, Lin J, Wang L, Hsia Y (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

  28. Jibiri NN (2001) Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environ Int 27:21–26

    Article  CAS  Google Scholar 

  29. Florou H, Trabidou G, Nicolaou G (2007) An assessment of the external radiological impact in areas of Greece with elevated natural radioactivity. J Environ Radioact 93:74–83

    Article  CAS  Google Scholar 

  30. Myrick TE, Berven BA, Haywood FF (1983) Determination of concentrations of selected radionuclides in surface soil in the U.S. Health Phys 45:631–642

    Article  CAS  Google Scholar 

  31. Megumi K, Oka T, Doi M, Kimura S, Tsujimoto T, Ishiyama T, Katsurayama K (1988) Relationships between the concentrations of natural radionuclides and the mineral composition of the surface soil. Radiat Prot Dosim 24(1–4):69–72

  32. McAulay IR, Moran D (1988) Natural radioactivity in soil in the Republic of Ireland. Radiat Prot Dosim 24(1–4):47–49

  33. Wong MC, Chan YK, Poon HT, Leung WM, Mok HY, So CK (1999) Environmental gamma absorbed dose rate in air in Hong Kong. Environmental Radiation Monitoring in Hong Kong Technical, Report No 17

    Google Scholar 

  34. Köster HW, Keen A, Pennders RMJ, Bannink DW, de Winkel JH (1988) Linear regression models for the natural radioactivity (238U, 232Th and 40K) in Dutch soils: a key to anomalies. Radiat Prot Dosim 24(1–4):63-68

  35. Bradley EJ (1993) Contract Report. Natural radionuclides in environmental media NRPB-M439

  36. Jagielak J, Biernacka M, Henschke J, Sosinska A (1992) Radiation Atlas of Poland. ISBN83-85787-01-1 Warsaw

  37. Malanca A, Gaidol L, Pessina V, Dallara G (1996) Distribution of 226Ra; 232Th, and 40K of Rio Grande do Norte (Brazil). J Environ Radioact 30(1):55–67

    Article  CAS  Google Scholar 

  38. Jacob O (1996) Exposure from natural radiation sources in Romania. J Prev Med 4(2):73–82

    Google Scholar 

  39. Zhongji Z and the Writing Group of the Nationwide Survey of Environmental Radioactivity Level in China (1992) Survey of environmental natural penetrating radiation level in China, 1983–1990 Radioprotection (Taiyuan) 2:120–122

  40. Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Measur 38:153–165

    Article  CAS  Google Scholar 

  41. Gusain GS, Rautela BS, Sahoo SK, Ishikawa T, Prasad G, Omori Y, Sorimachi A, Tokonami S, Ramola RC (2012) Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India. Radiat Prot Dosim 152(1–3):42–45

  42. Mohanty AK, Sengupta D, Das SK, Saha SK, Van KV (2004) Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India. J Environ Radioact 75:15–33

    Article  CAS  Google Scholar 

  43. Lalit BY, Shukla VK (1982) Natural radioactivity in foodstuffs from high natural radioactivity areas of southern India. In: Vohra KG, Mishra UC, Pillai KC, Sadasivan S (eds) Natural radiation environment III proceedings of the 2nd special symposium Bombay,Wiley, New Delhi, pp 43–49

  44. Lakshmi KS (1990) A report on the background radiation survey at Kudankulam Project site and its environs. Part-II Spectral measurements and analysis of soil, terrestrial marine and diet samples report Meenakshi College for Women Madras India

  45. Kannan V, Rajan MP, Iyengar MAR (1992) Gamma spectrometric studies of beach sands and soils in the enhanced background site at Kalpakkam. In: National seminar on radiation environment and man department of physics, Mysore University, Mysore, pp 8–9

  46. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119

    Article  CAS  Google Scholar 

  47. Radhakrishna AP, Somasekarapa HM, Narayana Y, Siddappa K (1993) A new natural background radiation area on the southwest coast of India. Health Phys 65:390–395

    Article  CAS  Google Scholar 

  48. Arogunjo AM, Hollriegl V, Giussani A, Leopold K, Gerstmann U, Veronese I, Oeh U (2009) Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J Environ Radioact 100:232–240

    Article  CAS  Google Scholar 

  49. Termizi R, Wahab A, Hussein A, Khalik MA, Wood A (2005) Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J Environ Radioact 80:287–304

    Article  Google Scholar 

  50. Shanthi G, Kumaran TT, Allen J, Gnana Raj G, Maniyan CG (2010) Measurement of activity concentration of natural radionuclides for the assessment of radiological indices. Radiat Prot Dosim 141(1):90–96

    Article  CAS  Google Scholar 

  51. Naivo R, Martin R, Franck T, Asivelo F, Solonjara Andriambololona R (2008) Top soil radioactivity assessment in a high natural radiation background area: the case of Vinaninkarena, Antsirabe—Madagascar. Appl Radiat Isot 66:1619–1622

    Article  Google Scholar 

  52. Shetty PK, Narayana Y (2010) Variation of radiation level and radionuclide enrichment in high background area. J Environ Radioact 101:1043–1047

    Article  CAS  Google Scholar 

  53. Jelena M, Popi B, Salbu T, Strand, Lindis S (2011) Assessment of radionuclide and metal contamination in a thorium rich area in Norway. J Environ Monit 13:1730

    Article  Google Scholar 

  54. Baranwal VC, Sharma SP, Sengupta D, Sandilya MK, Bhaumik BK, Gui R, Saha SK (2006) A new high background radiation area in the geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India. Radiat Measures 41:602–610

    Article  CAS  Google Scholar 

  55. Dragović S, Onjia A (2006) Classification of soil samples according to geographic origin using gamma ray spectrometry and principal component analysis. J Environ Radioact 89:150–158

    Article  Google Scholar 

  56. Godoy JM, Schuch LA, Nordemann DJR, Reis VRG, Ramalho M, Recio JC, Brito, Olech MA (1998) 137Cs, 226Ra, 228Ra, 210Pb and 40K Concentrations in Antarctic Soil, Sediment and Selected Moss and Lichen Samples. J Environ Radioact 411:33–45. http://www.researchgate.net/researcher/72813067_RRA_Brito

  57. Hamarneh IA, Reikat A, Toukan K (2003) Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu radionuclides in Jordanian soil samples. J Environ Radioact 67:53–67

    Article  Google Scholar 

  58. Aslani MAA, Aytas S, Akyil S, Yaprak G, Yener G, Eral M (2003) Activity concentration of caesium-137 in agricultural soils. J Environ Radioact 65:131–145

    Article  CAS  Google Scholar 

  59. Lavi N, Golobo G, Alfassi ZB (2006) Monitoring and surveillance of radio-cesium in cultivated soils and foodstuff samples in Israel 18 years after the Chernobyl disaster. Radiat Meas 46:78–83

    Article  Google Scholar 

  60. LaBrecque JJ, Rosales PA, Carias O (1992) The preliminary results of the measurements of environmental levels of 40K and 137Cs in Venezuela. Nucl Instr Meth A 312:217–222

    Article  Google Scholar 

  61. Poręba G, Bluszcz A, Snieszko Z (2003) Concentration and vertical distribution of 137Cs in agricultural and undisturbed soils from Checho and Czarnocin areas. Geochronometria 22:67–72

    Google Scholar 

  62. Zhiyanski M, Bech J, Sokolovska M, Lucot E, Bech J, Badot P (2008) Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. J Geochem Explor 96:256–266

    Article  CAS  Google Scholar 

  63. Zhao Y, Yan D, Zhang Q, Zhan J, Hu H (2012) Spatial distributions of (137) Cs in surface soil in Jing-Jin-Ji Region, North China. J Environ Radioact Nov 113:1-7

  64. Bara SV, Arora V, Chinnaesakki S, Sartandel SJ, Bajwa BS, Tripathi RM, Puranik VD (2012) Radiological assessment of natural and fallout radioactivity in the soil of Chamba and Dharamshala areas of Himachal Pradesh, India. J Radioanal Nucl Ch 291:769–776

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the guidance and encouragement of Dr. D. N. Sharma, Director, Health Safety and Environment Group, Bhabha Atomic Research Center (BARC) throughout this work. The help and support received from the colleagues of Health Physics Units, OSCOM, and the authorities of IREL during environmental sampling and survey of the study area is greatly acknowledged by the authors. The whole heartedly contribution of Dr. Manoj Mohapatra, Radiochemistry Division, BARC is greatly acknowledged during sampling and survey of the study area. The contribution of Shri S. Chinnaesakki and Smt. S. J. Sartandel, Health Physics Division, BARC is greatly acknowledged during the gamma spectrometric measurement of the samples. Authors are truly grateful for the cooperation received from other colleagues of the lab, during the progress of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Sahoo, S.K., Dubey, J.S. et al. On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India. J Radioanal Nucl Chem 303, 2081–2092 (2015). https://doi.org/10.1007/s10967-014-3814-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3814-6

Keywords

Navigation