Skip to main content
Log in

The determination of 134Cs and 22Na diffusion profiles in granodiorite using gamma spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Spent nuclear fuel repository safety evaluation today requires both laboratory and in situ field work in order to assess the parameters affecting the sorption and diffusion of radionuclides. Recent investigations at the Grimsel test site suggest that non-conservative errors in transport properties derived from laboratory scale experiments can lead to over-conservative estimates of matrix diffusion depths. As a result, the geosphere’s capability to retain radionuclides may be underestimated. In this study the in situ diffusion and the sorption of 134Cs and 22Na into granodiorite were determined using gamma spectroscopy. Autoradiography was used to reveal the minerals into which the radionuclides were sorbed. A rock sample was obtained from the Grimsel underground in situ diffusion test site in Switzerland. In the in situ test, a solution containing several different radionuclides was circulated continuously in a packed-off injection hole for two years and three months in order to study diffusion of the radionuclides into the surrounding bedrock. The gamma measurements show that in the course of the experiment 134Cs diffused 2.5 cm and 22Na 10 cm into the rock matrix, respectively. Caesium was found to have sorbed on mafic minerals biotite and chlorite. Results of this study were used in order to calculate an in situ effective diffusion coefficient for caesium and sodium in Grimsel granodiorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Witherspoon PA (1996) In: Witherspoon PA (ed) introduction to second world wide review of geological problems in radioactive waste isolation, geological problems in radioactive waste isolation, second world wide review, vol 1. Lawrence Berkeley National Laboratory Report, p 1–4

  2. SKB 91 Final disposal of spent nuclear fuel. Importance of the bedrock for safety. (1992) SKB Technical Report TR-92-20. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm

  3. Miller B, Marcos N (2007) Process report—FEPs and scenarios for a spent fuel repository at Olkiluoto. Posiva Report. 2007-12, Posiva Oy, Eurajoki

  4. Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85:4379–4397

    Article  CAS  Google Scholar 

  5. Dai Z, Wolfsberg A, Lu Z, Reimus P (2007) Upscaling matrix diffusion coefficients for heterogeneous fractured rocks. Geophys Res Lett 34:L07408

    Article  Google Scholar 

  6. Grisak GE, Pickens JF (1980) Solute transport through fractured media: 1. The effect of matrix diffusion. Water Resour Res 16(4):719–730

    Article  Google Scholar 

  7. Tsai S, Wang T, Li M, Wei Y, Teng S (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J Hazard Mater 161(2–3):854–861

    Article  CAS  Google Scholar 

  8. Widestrand H, Byegård J, Cvetkovic V, Tullborg E-L, Winberg A, Andersson P, Siitari-Kauppi M (2007) Sorbing tracer experiments in a crystalline rock fracture at Äspö (Sweden): 1. experimental setup and microscale characterization of retention properties. Water Resour Res 43:W10413

    Article  Google Scholar 

  9. Skagius K, Neretnieks I (1988) Measurements of cesium and strontium diffusion in biotite gneiss. Water Resour Res 24(1):75–84

    Article  CAS  Google Scholar 

  10. Siitari-Kauppi M, Lindberg A, Hellmuth KH, Timonen J, Väätäinen K, Hartikainen J, Hartikainen K (1997) The effect of microscale pore structure on matrix diffusion—a site-specific study on tonalite. J Contam Hydrol 26(1–4):147–158

    Article  CAS  Google Scholar 

  11. Widestrand H, Andersson P, Byegård J, Skarnemark G, Skålberg M, Wass E (2001) In situ migration experiments at Äspö Hard Rock Laboratory, Sweden : results of radioactive tracer migration studies in a single fracture. J Radioanal Nucl Chem 250(3):501–517

    Article  CAS  Google Scholar 

  12. Peter Vilks P, Miller N, Jensen M (2004) In situ diffusion experiment in sparsely fractured granite. Mater Res Soc Symp Proc 824:379–384

    Google Scholar 

  13. Möri A, Alexander WR, Geckeis H, Hauser W, Schäfer T, Eikenberg J, Fierz T, Degueldre C, Missana T (2003) The colloid and radionuclide retardation experiment at the Grimsel test site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids Surf A: Physicochem Eng Aspects 217(1–3):33–47

    Article  Google Scholar 

  14. Möri A, Mazurek M, Adler M, Schild, Siegesmund S, Vollbrecht A, Ota K, Ando T, Alexander WR, Smith PA, Haag P, Buehler Ch. (2003) Grimsel test site investigation phase IV (1994-1996): the Nagra-JNC in situ study of safety relevant radionuclide retardation in fractured crystalline rock IV: the insitu study of matrix porosity in the vicinity of a water conducting fracture. Nagra Technical Report NTB 00-08, Nagra, Wettingen

  15. Pinnioja S, Jaakkola T, Miettinen JK (1984) Comparison of batch and autoradiographic methods in sorption studies of radionuclides in rock and mineral samples. Mater Res Soc Symp Proc 26:979–984

    Article  CAS  Google Scholar 

  16. Siitari-Kauppi M, Hölttä P, Pinnioja S, Lindberg A (1999) Cesium sorption on tonalite and mica gneiss. Mater Res Soc Symp Proc 556:1099–1106

    Article  CAS  Google Scholar 

  17. Hsu C-N, Wei Y–Y, Chuang J-T, Tseng C-L, Yang J-Y, Ke C-H, Cheng, Teng S-P (2002) Sorption of several safety relevant radionuclides on granite and diorite—a potential repository host rock in the Taiwan area. Radiochim Acta 90:659–664

    Article  CAS  Google Scholar 

  18. Aksoyoglu S (1990) Cesium sorption on mylonite. J Radioanal Nucl Chem 140(2):301–313

    Article  CAS  Google Scholar 

  19. Koivula R (1996) Kiillemineraalien ionivaihto-ominaisuudet ja radionuklidien sorptio niihin geokemiallisessa systeemissä. Helsingin yliopisto, Kemian laitos, Radiokemian laboratorio, Helsinki

    Google Scholar 

  20. Deer WA, Howie J, Zussman J (1962) In: Rock-forming minerals, vol 3. Wiley, New York p 270

  21. Möri A, Soler P, Ota K, Havlova V (2007) LTD_WP-1: predictive modeling for LTD monopole experiment. Nagra, Switzerland

    Google Scholar 

  22. Hölttä P (2002) Radionuclide migration in crystalline rock fractures, laboratory study of matrix diffusion. Helsingin yliopisto, Kemian laitos, Radiokemian laboratorio, Helsinki

    Google Scholar 

  23. Hölttä P, Poteri A, Siitari-Kauppi M, Huittinen N (2008) Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion. Phys Chem Earth 33:983–990

    Article  Google Scholar 

  24. Steefel CI (2009) CrunchFlow. software for modeling multicomponent reactive flow and transport. User’s manual. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  25. Steefel CI, Yabusaki SB (1996) OS3D/GIMRT, Software for multicomponent-multidimensional reactive transport: user’s manual and programmer’s guide, PNL-11166. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  26. Steefel CI (2001) GIMRT, version 1.2: software for modeling multicomponent, multidimensional reactive transport. User’s Guide, UCRL-MA-143182. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  27. Kelokaski M, Siitari-Kauppi M, Sardini P, Möri A, Hellmuth K-H (2006) Characterisation of pore space geometry by 14C-PMMA impregnation-development work for in situ studies. J Geochem Explor 90(1–2):45–52

    Article  CAS  Google Scholar 

  28. Kelokaski M, Siitari-Kauppi M, Kauppi I, Hellmuth K-H, Möri A, Biggin C, Kickmaier W, Inderbitzin L, Martin A (2010) Characterisation of pore Space Geometry by 14C-MMA ImpregnationNagra, technical report 05-03. 44 + 5

  29. Gimmi T, Kosakowski G (2011) How mobile are sorbed cations in clays and clay rocks? Environ Sci Technol 45:1443–1449

    Article  CAS  Google Scholar 

  30. Möri A (2005) GTS Phase VI—Pore Space Geometry (PSG) experiment in situ impregnation of matrix pores in granite rock—Study of a potential borehole disturbed zone (BDZ). Nagra Arbeitsbericht NAB 05-19, Nagra

    Google Scholar 

  31. Van Loon LR, Wersin P, Soler JM, Eikenberg J, Gimmi Th, Hernán P, Dewonck S, Savoye S (2004) In situ diffusion of HTO, 22Na+, Cs+ and I in Opalinus clay at the mont terri underground rock laboratory. Radiochim Acta 92:757–763

    Article  Google Scholar 

  32. Wersin P, Soler JM, Van Loon L, Eikenberg J, Baeyens B, Grolimund D, Gimmi T, Dewonck S (2008) Diffusion of HTO, Br, I, Cs+, 85Sr2+ and 60Co2+ in a clay formation: results and modelling from an in situ experiment in Opalinus Clay. Appl Geochem 23:678–691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalli Jokelainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokelainen, L., Meski, T., Lindberg, A. et al. The determination of 134Cs and 22Na diffusion profiles in granodiorite using gamma spectroscopy. J Radioanal Nucl Chem 295, 2153–2161 (2013). https://doi.org/10.1007/s10967-012-2268-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2268-y

Keywords

Navigation