Skip to main content
Log in

Cesium, manganese and cobalt water–sediment transfer kinetics and diffusion into mangrove sediments inferred by radiotracer experiments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A study on the trace elements transfer from tidal water to mangrove sediments from Guanabara Bay (southeastern Brazil) was performed in laboratory microcosms. Sediment cores were covered with tidal water spiked with 137Cs, 54Mn and 57Co during 5-h experiments, and water samples were taken at regular intervals to measure uptake kinetics at the sediment–water interface. At the end of the experiments, the uptake and diffusional penetration into the sediments was evaluated. Half-removal times from water to sediments were slightly higher for 137Cs (3.4 ± 1.7 h) than observed for 54Mn (2.3 ± 0.2 h) and 57Co (2.6 ± 1.1 h). After these experiments, all radioisotopes presented decreasing activities with increasing sediment depth, being the distribution of 137Cs indicative of higher diffusion within the upper 2 cm. This study on the removal of 137Cs, 54Mn and 57Co from tidal water by mangrove sediments suggests that while 57Co and 54Mn presented closer behaviors, there was a slightly higher mobility of 137Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall POJ, Anderson LG, van der Loeff MMR, Sundby B, Westerlund SFG (1989) Limnol Oceanogr 34:734–746

    Article  CAS  Google Scholar 

  2. Petersen K, Kristensen E, Bjerregaard P (1998) Mar Environ Res 45:403–415

    Article  CAS  Google Scholar 

  3. Lujanienė G, Beneš P, Štamberg K, Jokšas K, Vopalka D, Radžiūtė E, Šilobritienė B, Šapolaitė J (2010) J Radioanal Nucl Chem 286:361–366

    Article  Google Scholar 

  4. Mu DH, Du JZ, Li DJ, Song HQ, Yan SP, Gu YJ (2006) J Radioanal Nucl Chem 267:585–589

    Article  CAS  Google Scholar 

  5. Osaki S, Sugihara S, Momoshima N, Maeda Y (1997) J Environ Radioact 37:55–71

    Article  CAS  Google Scholar 

  6. Santschi PH, Nyffeler UP, O’Hara P, Buchholtz M, Broecker WS (1984) Deep Sea Res 31:451–468

    Article  CAS  Google Scholar 

  7. Clark MW, McConchie DM, Lewis DW, Saenger P (1998) Chem Geol 149:147–171

    Article  CAS  Google Scholar 

  8. Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P (2006) Mar Chem 98:1–17

    Article  CAS  Google Scholar 

  9. Machado W, Santelli RE, Carvalho MF, Molisani MM, Barreto RC, Lacerda LD (2008) J Coast Res 24:25–32

    Article  CAS  Google Scholar 

  10. Machado EC, Machado W, Bellido LF, Patchineelam SR, Bellido AV (2008) Water Air Soil Pollut 192:77–83

    Article  CAS  Google Scholar 

  11. Tam NFY, Wong YS (1996) Environ Pollut 94:283–291

    Article  CAS  Google Scholar 

  12. Alongi DM, Wattayakorn G, Boyle S, Tirendi F, Payn C, Dixon P (2003) Biogeochemistry 69:105–123

    Article  Google Scholar 

  13. Machado W, Silva-Filho EV, Oliveira RR, Lacerda LD (2002) Mar Pollut Bull 44:1277–1280

    Article  CAS  Google Scholar 

  14. Godoy JM, Moreira I, Bragança MJ, Wanderley C, Mendes LB (1998) J Radioanal Nucl Chem 227:157–160

    Article  CAS  Google Scholar 

  15. Carreira RS, Wagener ALR, Readman JW, Fileman TW, Macko AS, Veiga A (2002) Mar Chem 79:207–227

    Article  CAS  Google Scholar 

  16. Borges AC, Sanders CJ, Santos HL, Araripe DR, Machado W, Patchineelam SR (2009) Mar Pollut Bull 58:1750–1754

    Article  CAS  Google Scholar 

  17. Farias CO, Hamacher C, Wagener ALR, Campos RC, Godoy JM (2007) J Braz Chem Soc 18:1194–1206

    Article  CAS  Google Scholar 

  18. Koschinsky A, Winkler A, Fritsche U (2003) Appl Geochem 18:693–710

    Article  CAS  Google Scholar 

  19. Schaanning MT, Hylland K, Eriksen DØ, Bergan TD, Gunnarson JS, Skei J (1996) Mar Pollut Bull 33:71–79

    Article  CAS  Google Scholar 

  20. Karaca F, Ölmez I, Aras NK (2004) J Radioanal Nucl Chem 259:223–226

    Article  CAS  Google Scholar 

  21. Kumar S, Rawat N, Tomar BS, Manchanda VK, Ramanathan S (2007) J Radioanal Nucl Chem 274:229–231

    Article  CAS  Google Scholar 

  22. Štamberg K, Beneš P, Mizera J, Vopálka D, Procházková Š (2003) J Radioanal Nucl Chem 258:347–360

    Article  Google Scholar 

  23. Ciffroy P, Garnier JM, Pham MK (2001) J Environ Radioact 55:71–91

    Article  CAS  Google Scholar 

  24. Cournane S, Vintró LL, Mitchell PI (2010) J Environ Radioact 101:985–991

    Article  CAS  Google Scholar 

  25. Metian M, Warnau M, Hédouin L, Bustamante P (2009) Mar Biol 156:2063–2075

    Article  CAS  Google Scholar 

  26. Wang WX, Ke C, Yu KN, Lam PKS (2000) Mar Ecol Prog Ser 208:41–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI) from the Radiation Protection and Dosimetry Institute (IRD) for the supply of the radionuclides used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, E.C., Machado, W., Bellido, A.V.B. et al. Cesium, manganese and cobalt water–sediment transfer kinetics and diffusion into mangrove sediments inferred by radiotracer experiments. J Radioanal Nucl Chem 292, 349–353 (2012). https://doi.org/10.1007/s10967-011-1449-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1449-4

Keywords

Navigation