Skip to main content
Log in

Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) and bentonite (B)/zeolite (Z)-PAN composites were prepared by direct polymerization of acrylonitrile (AN) and AN adsorbed onto B and Z. PAN and the composites were subjected to amidoximation procedure to obtain polyacrylamidoxime (PAO), B-PAO and Z-PAO compositions. The structural features were evaluated by FT-IR, XRD and SEM analysis. The adsorption dependency of the materials on ion concentration, temperature and time were investigated for Pb2+ and UO2 2+. The adsorption capacities of B/Z-PAO composites were higher than those of pure PAO. The values of enthalpy and entropy changes were positive. The kinetics of the adsorption was well defined by the pseudo second order rate model. For the use of 1 M HCl as a regenerative effluent, the composites were reusable for five sequential treatments without any change in their structures whereas PAO completely gelled in the first use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Celis R, Hermosin MC, Cornjo J (2000) Environ Sci Technol 34:4593

    Article  CAS  Google Scholar 

  2. Ma Y, Tong W, Zhou H, Suib SL (2000) Microporous Mesoporous Mater 37:243

    Article  CAS  Google Scholar 

  3. Lagadic IL, Mitchell MK, Payne BD (2001) Environ Sci Technol 35:984

    Article  CAS  Google Scholar 

  4. Babel S, Kurniawan TA (2003) J Hazard Mater 97:219

    Article  CAS  Google Scholar 

  5. Wang YH, Lin SH, Juang RS (2003) J Hazard Mater 102:291

    Article  CAS  Google Scholar 

  6. Bergaya F, Theng BKG, Lagaly G (2006) Developments in clay science, vol 1. Elsevier, Oxford

    Google Scholar 

  7. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New Jersey

    Book  Google Scholar 

  8. Luckham PF, Rossi S (1999) Adv Colloid Interface Sci 82:43

    Article  CAS  Google Scholar 

  9. Starodoubtsev SG, Ryabova AA, Dembo AT, Dembo KA, Aliev II, Wasserman AM, Khokhlov AR (2002) Macromolecules 35:6362

    Article  CAS  Google Scholar 

  10. Godelitsas A, Armbruster T (2003) Microporous Mesoporous Mater 61:3

    Article  CAS  Google Scholar 

  11. Ulusoy U, Şimşek S, Ceyhan Ö (2003) Adsorption 9:165

    Article  CAS  Google Scholar 

  12. Şimşek S, Ulusoy U, Ceyhan Ö (2003) J Radioanal Nucl Chem 256:315

    Article  Google Scholar 

  13. Şimşek S, Ulusoy U (2004) J Radioanal Nucl Chem 261:79

    Article  Google Scholar 

  14. Fisher HJ, Lieser KH (1993) Fresen. J Anal Chem 346:934

    Google Scholar 

  15. Dessouki AM, El-Tahawy M, El-Boohy H, El-Mongy SA, Badawy SM (1999) Radiat Phys chem 54:627

    Article  CAS  Google Scholar 

  16. Omichi H, Katakai A, Sugo T, Okamoto A (1986) Sep Sci Technol 21:563

    Article  CAS  Google Scholar 

  17. Eldridge RJ (2000) In: Wilson ID, Cooke M, Poole CF (eds) Encyclopedia of separation science, Academic Press, London

  18. Şahiner N, Pekel N, Güven O (1999) React Funct Polym 39:139

    Article  Google Scholar 

  19. Ulusoy U, Şimşek S (2005) J Hazard Mater B127:163

    Article  Google Scholar 

  20. Krishna BS, Murty DSR, Jai Prakash BS (2000) J Colloid Interface Sci 229:230

    Article  CAS  Google Scholar 

  21. El-Kamash AM, Zaki AA, Abed El Geleel M (2005) J Hazard Mater 127:211

    Article  CAS  Google Scholar 

  22. Yun L, Xing S, Haidong C, Huixian Z, Shixiang G (2006) J Hazard Mater 137:1149

    Article  Google Scholar 

  23. Sun S, Wang A (2006) J Hazard Mater 131:103

    Article  CAS  Google Scholar 

  24. Basha S, Murthy ZVP (2007) Process Biochem 42:1521

    Article  CAS  Google Scholar 

  25. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Environ Sci Technol 37:4011

    Article  CAS  Google Scholar 

  26. Shi HZ, Lan T, Pinnavaia TJ (1996) Chem Mater 8:1584

    Article  CAS  Google Scholar 

  27. Pefferkorn E (1999) J Colloid Interface Sci 216:197

    Article  CAS  Google Scholar 

  28. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  29. Dai S, Shin YS, Barnes CE, Toth LM (1997) Chem Mater 9:2521

    Article  CAS  Google Scholar 

  30. Kabay N, Demircioğlu M, Yaylı S, Günay E, Yüksel M, Sağlam M, Sreat M (1998) Ind Eng Chem Res 37:1983

    Article  CAS  Google Scholar 

  31. Atun G, Hisarlı G, Tunçay M (1998) Colloids Surf 143:27

    Article  CAS  Google Scholar 

  32. Anirudhan TS, Suchithra PS, Radhakrishnan PG (2009) Appl Clay Sci 43:336

    Article  CAS  Google Scholar 

  33. Cestari AR, Eunice VF, Mottos CRS (2006) J Chem Thermodyn 38:1092

    Article  CAS  Google Scholar 

  34. Smiciklas I, Dimovic S, Plecas I, Mitric M (2006) Water Res 40:2267

    Article  CAS  Google Scholar 

  35. Aycik GA, Gurellier R (2007) J Radioanal Nucl Chem 273:13

    Article  Google Scholar 

  36. Konstantinou M, Pashalidis I (2007) J Radioanal Nucl Chem 273:549

    Article  CAS  Google Scholar 

  37. Bagherifam S, Lakzian A, Ahmadi SJ, Rahimi MF, Halajnia A (2010) J Radioanal Nucl Chem 283:289

    Article  CAS  Google Scholar 

  38. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) J Radioanal Nucl Chem 285:447

    Article  CAS  Google Scholar 

  39. Kim JH, Lee HI, Yeon JW, Jung Y, Kim JM (2010) J Radioanal Nucl Chem 286:129

    Article  CAS  Google Scholar 

  40. Pang C, Liu Y, Cao X, Hua R, Wang C, Li C (2010) J Radioanal Nucl Chem 286:185

    Article  CAS  Google Scholar 

  41. Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S (2010) J Radioanal Nucl Chem 283:231

    Article  CAS  Google Scholar 

  42. Fan F, Ding H, Bai J, Wu X, Lei F, Tian W, Wang Y, Qin Z (2011) J Radioanal Nucl Chem 289:367

    Article  CAS  Google Scholar 

  43. Ferrah N, Abderrahim O, Didi MA, Villemin D (2011) J Radioanal Nucl Chem 289:721

    Article  CAS  Google Scholar 

  44. Hussein AEM (2011) J Radioanal Nucl Chem 289:321

    Article  CAS  Google Scholar 

  45. Morsy AMA, Hussein AEM (2011) J Radioanal Nucl Chem 288:341

    Article  CAS  Google Scholar 

  46. Wang M, Qiu J, Tao X, Wu C, Cui W, Liu Q, Lu S (2011) J Radioanal Nucl Chem 288:895

    Article  CAS  Google Scholar 

  47. Zhang Y, Zhao H, Fan Q, Zheng X, Li P, Liu S, Wu W (2011) J Radioanal Nucl Chem 288:395

    Article  CAS  Google Scholar 

  48. Zhao D, Yang S, Chen S, Guo Z, Yang X (2011) J Radioanal Nucl Chem 287:557

    Article  CAS  Google Scholar 

  49. Zhu W, Liu Z, Chen L, Dong Y (2011) J Radioanal Nucl Chem 289:781

    Article  CAS  Google Scholar 

  50. Zou W, Zhao L, Han R (2011) J Radioanal Nucl Chem 288:239

    Article  CAS  Google Scholar 

  51. Zou W, Bai H, Zhao L, Li K, Han R (2011) J Radioanal Nucl Chem 288:779

    Article  CAS  Google Scholar 

  52. Yadanaparthi SKR, Graybill D, Wandruszka R (2009) J Hazard Mater 171:1

    Article  CAS  Google Scholar 

  53. Gupta VK, Carrott MML, Carrott R, Suhas (2009) Crit Rev Environ Sci Technol 39:783

    Article  Google Scholar 

Download references

Acknowledgments

This work supported by The Research Fund of Cumhuriyet University (Project no: F-166) to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulvi Ulusoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şimşek, S., Ulusoy, U. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl Chem 292, 41–51 (2012). https://doi.org/10.1007/s10967-011-1415-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1415-1

Keywords

Navigation