Skip to main content
Log in

The influence of the temperature on the carbonate complexation of uranium(VI): a spectroscopic study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

The interaction of uranium(VI) with carbonate ions was studied with absorption spectroscopy and time-resolved laser-induced fluorescence spectroscopy due to the importance of these complexes in environmental relevant waters. In the pH range from 2 to 11 the influence of the temperature on the spectra was studied to check changes in the abundances of several binding forms. It was found that several binding forms are predominant at different temperatures and pH values. This observation can be explained by speciation changes due to the dependence of chemical equilibria on the temperature. Furthermore photoluminescence spectra of aqueous solutions of uranyl carbonate complexes were observed at ambient temperatures for the first time and single component absorption spectra of the uranyl carbonate complexes UO2(CO3)3 4− and UO2(CO3)2 2− were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meinrath G (1998) Freiberg Online Geosci 1:1–100

    Google Scholar 

  2. Meinrath G, Kimura T (1993) J Alloy Compd 202:89–93

    Article  CAS  Google Scholar 

  3. Clark DL, Hobart DE, Neu MP (1995) Chem Rev 95(1):25–48

    Article  CAS  Google Scholar 

  4. Ciavatta L, Ferri D, Grenthe I, Salvatore F (1981) Inorg Chem 20(2):463–467

    Article  CAS  Google Scholar 

  5. Maya L (1982) Inorg Chem 21(7):2895–2898

    Article  CAS  Google Scholar 

  6. Blake CA, Coleman CF, Brown KB, Hill DG, Lowrie RS, Schmitt JM (1956) J Am Chem Soc 78(23):5978–5983

    Article  CAS  Google Scholar 

  7. Grenthe I, Ferri D, Salvatore F, Riccio G (1984) J Chem Soc Dalton Trans 11:2439–2443

    Google Scholar 

  8. Maya L, Begun GM (1981) J Inorg Nucl Chem 43(11):2827–2832

    Article  CAS  Google Scholar 

  9. Muller K, Brendler V, Foerstendorf H (2008) Inorg Chem 47(21):10127–10134

    Article  Google Scholar 

  10. Brucher E, Glaser J, Toth I (1991) Inorg Chem 30(9):2239–2241

    Article  CAS  Google Scholar 

  11. Strom ET, Woessner DE (1981) J Am Chem Soc 103(5):1255–1256

    Article  CAS  Google Scholar 

  12. Bell JT, Biggers RE (1967) J Mol Spectrosc 22(3):262–271

    Article  CAS  Google Scholar 

  13. Cinneide SO, Scanlan JP, Hynes MJ (1975) J Inorg Nucl Chem 37(4):1013–1018

    Article  CAS  Google Scholar 

  14. Geipel G, Bernhard G, Brendler V, Nitsche H (1998) Radiochim Acta 82:59–62

    CAS  Google Scholar 

  15. Kimura T, Serrano J, Nakayama S, Takahashi K, Takeishi H (1992) Radiochim Acta 58/59:173–178

    Google Scholar 

  16. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Radiochim Acta 89:511–518

    Article  CAS  Google Scholar 

  17. Moulin C, Laszak I, Moulin V, Tondre C (1998) Appl Spectrosc 52(4):528–535

    Article  CAS  Google Scholar 

  18. Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I (1995) J Chem Soc Faraday Trans 91(15):2275–2285

    Article  Google Scholar 

  19. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung, Cregum C, Wanner H (1992) Chemical thermodynamics of uranium, 1st edn. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  20. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, Amsterdam

    Google Scholar 

  21. Geipel G, Amayri S, Bernhard G (2008) Spectrochim Acta A 71(1):53–58

    Article  CAS  Google Scholar 

  22. Zanonato P, Di Bernardo P, Bismondo A, Liu GK, Chen XY, Rao LF (2004) J Am Chem Soc 126(17):5515–5522

    Article  CAS  Google Scholar 

  23. Eliet V, Grenthe I, Bidoglio G (2000) Appl Spectrosc 54:99–105

    Article  CAS  Google Scholar 

  24. Grossmann K, Arnold T, Ikeda-Ohno A, Steudtner R, Geipel G, Bernhard G (2009) Spectrochim Acta A 72(2):449–453

    Article  Google Scholar 

  25. Meinrath G (1997) J Radioanal Nucl Chem 224(1–2):119–126

    Article  CAS  Google Scholar 

  26. Bell JT, Biggers RE (1965) J Mol Spectrosc 18(3):247–275

    Article  CAS  Google Scholar 

  27. Lubal P, Havel J (1997) Chem Pap Chem Zvesti 51(4):213–220

    CAS  Google Scholar 

  28. Meinrath G, Klenze R, Kim JI (1996) Radiochim Acta 74:81–86

    CAS  Google Scholar 

  29. Brachmann A, Geipel G, Bernhard G, Nitsche H (2002) Radiochim Acta 90(3):147–153

    Article  CAS  Google Scholar 

  30. Meinrath G, Schweinberger M (1996) Radiochim Acta 75:205–210

    CAS  Google Scholar 

  31. Meinrath G, Kato Y, Yoshida Z (1993) J Radioanal Nucl Chem Art 174(2):299–314

    Article  CAS  Google Scholar 

  32. Dai S, Burleigh MC, Simonson JM, Mesmer RE, Xue ZL (1998) Radiochim Acta 81(4):195–199

    CAS  Google Scholar 

  33. Sachs S, Brendler V, Geipel G (2007) Radiochim Acta 95(2):103–110

    Article  CAS  Google Scholar 

  34. Scanlan JP (1977) J Inorg Nucl Chem 39(4):635–639

    Article  CAS  Google Scholar 

  35. Binstead RA, Zuberbühler AD, Jung BH (2004) Specfit. Global Analysis System, vol 3.0.35

  36. Sander R (1999) Surv Geophys 20(1):1–31

    Article  Google Scholar 

  37. Sigg L, Stumm W (1994) Aquatische chemie, 3rd edn. Teubner, Stuttgart

    Google Scholar 

  38. Goff GS, Brodnax LF, Cisneros MR, Peper SM, Field SE, Scoft BL, Runde WH (2008) Inorg Chem 47(6):1984–1990

    Article  CAS  Google Scholar 

  39. Saini RD, Bhattacharyya PK, Iyer RM (1989) J Photochem Photobiol A Chem 47(1):65–81

    Article  CAS  Google Scholar 

  40. Saini RD, Iyer RM (1991) J Photochem Photobiol A Chem 61(2):171–182

    Article  CAS  Google Scholar 

  41. Wang ZM, Zachara JM, Yantasee W, Gassman PL, Liu CX, Joly AG (2004) Environ Sci Technol 38(21):5591–5597

    Article  CAS  Google Scholar 

  42. Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Radiochim Acta 74:87–91

    CAS  Google Scholar 

  43. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) J Alloy Compd 271–273:201–205

    Google Scholar 

  44. Kalmykov SN, Choppin GR (2000) Radiochim Acta 88(9–11):603–606

    Article  CAS  Google Scholar 

  45. Sukhno IV, Buzko VY, Pettit LD (2005) Chem Int 27(3):22–23

    Google Scholar 

  46. Puigdomenech I, Plyasunov AV, Rard JA, Grenthe I (1997) In: Grenthe I, Puigdomenech I (ed) Modeling in aquatic chemistry. NEA/OECD, Paris

  47. Amayri S, Reich T, Arnold T, Geipel G, Bernhard G (2005) J Solid State Chem 178(2):567–577

    Article  CAS  Google Scholar 

  48. Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Environ Sci Technol 43(10):3941–3946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors thank Mrs. G. Grambole for preparing the uranium stock solutions from solid UO3, Mrs. C. Eckardt and Mrs. U. Schaefer for providing analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Götz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, C., Geipel, G. & Bernhard, G. The influence of the temperature on the carbonate complexation of uranium(VI): a spectroscopic study. J Radioanal Nucl Chem 287, 961–969 (2011). https://doi.org/10.1007/s10967-010-0854-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0854-4

Keywords

Navigation