Skip to main content
Log in

Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO2 targets as well as from coproduced radiogallium was developed. The radionuclides 69Ge and 67Ga produced during irradiation of GeO2 were used as tracers for Ge and Ga in the experiments. After dissolution of the target the ratio of As(III) to As(V) was determined via thin layer chromatography (TLC). The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as of KI was studied using cyclohexane. The optimum separation of radioarsenic was achieved using cyclohexane with 4.75 M HCl and 0.5 M KI and its back-extraction with a 0.1% H2O2 solution. The separation leads to high purity radioarsenic containing no radiogallium and <0.001% [69Ge]Ge. The overall radiochemical yield is 93 ± 3%. The practical application of the optimized procedure in the production of 71As and 72As is demonstrated and batch yields achieved were in the range of 75–84% of the theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tolmachev V, Lundqvist H (2001) J Radioanal Nucl Chem 247:61

    Article  CAS  Google Scholar 

  2. Beard HC, Cuninghame JG (1965) Nuclear Science Series, National Academy of Sciences-National Research Council, United States Atomic Energy Commission, NAS-NS-3002

  3. Billinghurst MW, Abrams DN, Cantor S (1990) Appl Radiat Isot 41:501

    Article  CAS  Google Scholar 

  4. Mirzadeh S, Lambrecht RM (1996) J Radioanal Nucl Chem 202:7

    Article  CAS  Google Scholar 

  5. Ward TE, Swindle DL, Wright RJ, Kuroda PK (1970) Radiochim Acta 14:70

    CAS  Google Scholar 

  6. Chattopadhyay S, Pal S, Vimalnath KV, Das MK (2007) Appl Radiat Isot 65:1202

    Article  CAS  Google Scholar 

  7. Guin R, Das SK, Saha SK (1998) J Radioanal Nucl Chem 227:181

    Article  CAS  Google Scholar 

  8. Jahn M (2009) Doctoral Dissertation, Johannes Gutenberg-Universität, Mainz

  9. Pacey GE, Ford JA (1981) Talanta 28:935

    Article  CAS  Google Scholar 

  10. Maki Y, Murakami Y (1974) J Radioanal Chem 22:5

    Article  CAS  Google Scholar 

  11. Beard HC, Lyerly LA (1961) Anal Chem 33:1781

    Article  CAS  Google Scholar 

  12. Korkisch J, Feik F (1967) Sep Sci 2:1

    Article  CAS  Google Scholar 

  13. Forehand TJ, Dupuy AE Jr, Tal H (1976) Anal Chem 48:999

    Article  CAS  Google Scholar 

  14. Hubert AE (1983) Talanta 30:967

    Article  CAS  Google Scholar 

  15. Azarez J, Moneo P, Vidad JC, Palacios F (1985) Analyst 110:747

    Article  Google Scholar 

  16. Chappell J, Chiswell B, Olszowy H (1995) Talanta 42:323

    Article  CAS  Google Scholar 

  17. Tanaka K, Takagi N (1969) Anal Chim Acta 48:357

    Article  CAS  Google Scholar 

  18. Byrne AR, Gorenc D (1972) Anal Chim Acta 59:81

    Article  CAS  Google Scholar 

  19. Byrne AR (1972) Anal Chim Acta 59:91

    Article  CAS  Google Scholar 

  20. Maher WA (1981) Anal Chim Acta 126:157

    Article  CAS  Google Scholar 

  21. Suzuki N, Satoh K, Shoji H, Imura H (1986) Anal Chim Acta 185:239

    Article  CAS  Google Scholar 

  22. Donaldson EM, Wang M (1986) Talanta 33:35

    Article  CAS  Google Scholar 

  23. Palanivelu K, Balssubramanian N, Ramakrishna TV (1992) Talanta 39:555

    Article  CAS  Google Scholar 

  24. Rashid M, Bari A, Ejaz M (1992) J Radioanal Nucl Chem 157:193

    Article  CAS  Google Scholar 

  25. Wakui Y, Ebina T, Matsunaga H, Suzuki TM (2002) Anal Sci 18:793

    Article  CAS  Google Scholar 

  26. Jennewein M, Qaim SM, Hermanne A, Jahn M, Tsyganov E, Slavine N, Seliounie S, Antich PA, Kulkarni PV, Thorpe PE, Mason RP, Rösch F (2005) Appl Radiat Isot 63:343

    Article  CAS  Google Scholar 

  27. Firestone RB, Ekström LP (2004) LBNL Isotopes Project—LUNDS Universitet, Version 2.1. http://ie.lbl.gov/toi

  28. Spahn I, Steyn GF, Notier FM, Coenen HH, Qaim SM (2007) Appl Radiat Isot 65:1057

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Shehata is grateful to the Accelerators and Ion Sources Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt for a scholarship tenable at the Forschungszentrum Jülich and the University of Cologne, Germany. All authors thank the operators of the COSY and Baby Cyclotron at Jülich for performing the irradiations and S. Spellerberg for technical assistance. The authors also thank the Central Department for Chemical Analysis of the Forschungszentrum Jülich for analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Qaim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shehata, M.M., Scholten, B., Spahn, I. et al. Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J Radioanal Nucl Chem 287, 435–442 (2011). https://doi.org/10.1007/s10967-010-0699-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0699-x

Keywords

Navigation