Skip to main content

Advertisement

Log in

Properties optimization of electrospun polymer: organic-free perovskite nanofibers by controlling solution concentration

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, properties of electrospun polyvinylpyrrolidone-cesium lead iodide (CsPbI3) nanofibers have been optimized by controlling the solution concentration. The diameter of nanofibers was found to enlarge from 215 to 558 nm with increasing polymer concentration and to decrease from 481 to 228 nm with reducing total material concentration. The solution concentration was employed to alter the polymer structural confinement and organic-free perovskite stability to obtain maximum perovskite crystallinity and improved optical properties at a polymer to perovskite ratio of 15% and a material concentration of 43%. The results showed that with an increase in polymer concentration or a decrease in material concentration, the shrinkage ratio increases in the range of 13–20%, and higher tensile properties are achieved with strain of 2.5–3.5% and tensile strength of 1.4–1.9 MPa. The added perovskite significantly reduces the shrinkage ratio, which increases from 12–14% to 28–31% by decreasing perovskite concentration from 45 to 35%. Defects related to shrinkage can be eliminated by enhancing the nanofibers' adherence to the substrate, using substrates with a higher Young's modulus than the nanofibers, and reducing the thickness of the nanofibers. The resulting nanofibers showed high thermal stability with a weight loss of 1.8% to 3.6% at a temperature of 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shalan AE, Barhoum A, Elseman AM, Rashad MM, Lira-Cantú M. (2018) Nanofibers as promising materials for new generations of solar cells. Handbook of Nanofibers, Springer International Publishing, Cham 1–33. https://doi.org/10.1007/978-3-319-42789-8_51-1

  2. Bkkar M, Olekhnovich R, Uspenskaya M (2020) Obtaining nanofibers based on perovskite-polymer composites for applying in solar cells. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 20:129–136. https://doi.org/10.5593/sgem2020/4.1/s17.017

    Article  Google Scholar 

  3. Cao B, Yang L, Jiang S, Lin H, Wang N, Li X (2019) Flexible quintuple cation perovskite solar cells with high efficiency. J Mater Chem A 7:4960–4970. https://doi.org/10.1039/c8ta11945g

    Article  CAS  Google Scholar 

  4. Wang Y, Yokota T, Someya T (2021) Electrospun nanofiber-based soft electronics. NPG Asia Mater 13:22. https://doi.org/10.1038/s41427-020-00267-8

    Article  CAS  Google Scholar 

  5. Bkkar MA, Olekhnovich RO, Kremleva AV, Kovach YN, Kalanchina V, Uspenskaya MV (2022) Fabrication of electrospun polymer nanofibers modified with all-inorganic perovskite nanocrystals for flexible optoelectronic devices. Appl Nanosci 12:2961–2977. https://doi.org/10.1007/s13204-022-02603-6

    Article  CAS  Google Scholar 

  6. Bohr C, Pfeiffer M, Öz S, von Toperczer F, Lepcha A, Fischer T, Mathur S (2019) Electrospun hybrid perovskite fibers-flexible networks of one-dimensional semiconductors for light-harvesting applications. ACS Appl Mater Interfaces 11:25163–25169. https://doi.org/10.1021/acsami.9b05700

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Jiang Z, Wang W, Chu Z, Zhang Y, Wang C (2019) Electrospun PAN/MAPBI3 composite fibers for flexible and broadband photodetectors. Nanomaterials 9:50. https://doi.org/10.3390/nano9010050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen L, Chuang Y, Yang WD, Tsai K C, Chen CW, Dong CD (2021) All-inorganic perovskite CsPbX3 electrospun nanofibers with color-tunable photoluminescence and high performance optoelectronic applications. J Alloys Compd 856:157426. https://doi.org/10.1016/j.jallcom.2020.157426

  9. Bkkar M, Olekhnovich R, Kremleva A, Sitnikova V, Kovach Y, Zverkov N, Uspenskaya M (2023) Influence of electrospinning setup parameters on properties of polymer-perovskite nanofibers. Polymers (Basel) 15:731. https://doi.org/10.3390/polym15030731

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Fu D, Du Z, Fu H, Shao G, Yang W, Zheng J (2020) In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios. Ceram Int 46:18352–18357. https://doi.org/10.1016/j.ceramint.2020.04.035

    Article  CAS  Google Scholar 

  11. Meng L, Yang C, Meng J, Wang Y, Ge Y, Shao Z, Zhong H (2019) In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: shape tuning and polarized emission. Nano Res 12:1411–1416. https://doi.org/10.1007/s12274-019-2353-4

    Article  CAS  Google Scholar 

  12. Yang M, Yu J, Jiang S, Zhang C, Sun Q, Wang M, Lei F (2018) High stability luminophores: fluorescent CsPbX3 (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Opt Express 26:20649. https://doi.org/10.1364/oe.26.020649

    Article  CAS  PubMed  Google Scholar 

  13. Ercan E, Tsai PC, Chen JY, Lam JY, Hsu LC, Chueh CC, Chen WC (2019) Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl Mater Interfaces 11:23605–23615. https://doi.org/10.1021/acsami.9b05527

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Zhang S, Wang J (2020) Electrospinning of perovskite crystals with strong emission and improved electrical conductivity. International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), IEEE 715–719. https://doi.org/10.1109/AIEA51086.2020.00159

  15. Ünlü F, Jung E, Haddad J, Kulkarni A, Öz S, Choi H, Fischer T, Chakraborty S, Kirchartz T, Mathur S (2020) Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Mater 8. https://doi.org/10.1063/5.0011851

  16. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451. https://doi.org/10.1021/acs.chemrev.8b00336

    Article  CAS  PubMed  Google Scholar 

  17. Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheffler M (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5:1–9. https://doi.org/10.1126/sciadv.aav0693

    Article  CAS  Google Scholar 

  18. Fisicaro G, La Magna A, Alberti A, Smecca E, Mannino G, Deretzis I (2020) Local order and rotational dynamics in mixed A-cation lead iodide perovskites. J Phys Chem Lett 11:1068–1074. https://doi.org/10.1021/acs.jpclett.9b03763

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh D, Smith AR, Walker AB, Islam MS (2018) Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem Mater 30:5194–5204. https://doi.org/10.1021/acs.chemmater.8b01851

    Article  CAS  Google Scholar 

  20. Li B, Fu L, Li S, Li H, Pan L, Wang L, Yin L (2019) Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies. J Mater Chem A 7:20494–20518. https://doi.org/10.1039/c9ta04114a

    Article  CAS  Google Scholar 

  21. Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K (2016) Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292. https://doi.org/10.1021/acs.chemmater.5b04107

    Article  CAS  Google Scholar 

  22. Miyasaka T, Kulkarni A, Kim GM, Öz S, Jena AK (2020) Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Adv Energy Mater 10. https://doi.org/10.1002/aenm.201902500

  23. Romiluyi O, Eatmon Y, Ni R, Rand BP, Clancy P (2021) The efficacy of Lewis affinity scale metrics to represent solvent interactions with reagent salts in all-inorganic metal halide perovskite solutions. J Mater Chem A 9:13087–13099. https://doi.org/10.1039/d1tă3a

    Article  CAS  Google Scholar 

  24. Kirakosyan A, Kim Y, Sihn MR, Jeon MG, Jeong JR, Choi J (2020) Solubility-controlled room-temperature synthesis of cesium lead halide perovskite nanocrystals. ChemNanoMat 6:1863–1869. https://doi.org/10.1002/cnma.202000471

    Article  CAS  Google Scholar 

  25. Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L (2018) Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-03169-0

    Article  CAS  Google Scholar 

  26. Ye T, Zhou B, Zhan F, Yuan F, Ramakrishna S, Golberg D, Wang X (2020) Below 200 °C Fabrication strategy of black-phase CsPbI3 film for ambient-air-stable solar cells. Sol RRL 4:1–9. https://doi.org/10.1002/solr.202000014

    Article  CAS  Google Scholar 

  27. Wang B, Novendra N, Navrotsky A (2019) Energetics, structures, and phase transitions of cubic and orthorhombic cesium lead iodide (CsPbI3) polymorphs. J Am Chem Soc 141:14501–14504. https://doi.org/10.1021/jacs.9b05924

    Article  CAS  PubMed  Google Scholar 

  28. Tsai PC, Chen JY, Ercan E, Chueh CC, Tung SH, Chen WC (2018) Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 14:1–9. https://doi.org/10.1002/smll.201704379

    Article  CAS  Google Scholar 

  29. Elishav O, Beilin V, Rozent O, Shter GE, Grader GS (2018) Thermal shrinkage of electrospun PVP nanofibers. J Polym Sci Part B Polym Phys 56:248–254. https://doi.org/10.1002/polb.24538

    Article  CAS  Google Scholar 

  30. Liu L, Li T, Sun M, Jia W, Jiao K, Wang S, Luo Y (2022) Preparation of temperature-controlled shrinkage PTMC/PVP core-shell nanofibrous membrane with spindle-knotted structure for accelerating wound closure. Mater Lett 324:132601. https://doi.org/10.1016/j.matlet.2022.132601

  31. Fang F, Wang H, Wang H, Huang WM, Chen Y, Cai N, Chen X (2021) Stimulus-responsive shrinkage in electrospun membranes: Fundamentals and control. Micromachines 12:1–10. https://doi.org/10.3390/mi12080920

    Article  Google Scholar 

  32. Rozent O, Beilin VV, Shter GE, Grader GS (2016) Deformation control during thermal treatment of electrospun PbZr0.52Ti0.48O3 nanofiber mats. J Am Ceram Soc 99:1550–1556. https://doi.org/10.1111/jace.14203

    Article  CAS  Google Scholar 

  33. Tirumkudulu MS, Punati VS (2022) Solventborne Polymer coatings: drying, film formation, stress evolution, and failure. Langmuir 38:2409–2414. https://doi.org/10.1021/acs.langmuir.1c03124

    Article  CAS  PubMed  Google Scholar 

  34. Lei H, Francis LF, Gerberich WW, Scriven LE (2002) Stress development in drying coatings after solidification. AIChE J 48:437–451. https://doi.org/10.1002/aic.690480304

    Article  CAS  Google Scholar 

  35. Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer (Guildf) 49:4713–4722. https://doi.org/10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  36. Dodero A, Brunengo E, Castellano M, Vicini S (2020) Investigation of the mechanical and dynamic-mechanical properties of electrospun polyvinylpyrrolidone membranes: a design of experiment approach. Polymers (Basel) 12:1524. https://doi.org/10.3390/polym12071524

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Zhou L, Li M-C, Wu Q, Kojima Y, Zhou D (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials (Basel) 9:523. https://doi.org/10.3390/ma9070523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR (2022) Effects of hafnium and boron on antibacterial and mechanical properties of polyvinylpyrrolidone-based nanofibrous composites. Polym Bull 79:5885–5899. https://doi.org/10.1007/s00289-021-03627-8

    Article  CAS  Google Scholar 

  39. Hashmi M, Ullah S, Ullah A, Saito Y, Haider MK, Bie X, Wada K, Kim IS (2021) Carboxymethyl cellulose (CMC) based electrospun composite nanofiber mats for food packaging. Polymers (Basel) 13:1–12. https://doi.org/10.3390/polym13020302

    Article  CAS  Google Scholar 

  40. Rahmani F, Ziyadi H, Baghali M et al (2021) Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: A solution needed for pain management. Appl Sci 11. https://doi.org/10.3390/app11062779

  41. Kim WT, Park DC, Yang WH, Cho CH, Choi WY (2021) Effects of electrospinning parameters on the microstructure of PVP/TiO2 nanofibers. Nanomaterials 11:26–28. https://doi.org/10.3390/nano11061616

    Article  CAS  Google Scholar 

  42. Mottin AC, Ayres E, Oréfice RL, Câmara JJD (2016) What changes in poly(3-hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film? Mater Res 19:57–66. https://doi.org/10.1590/1980-5373-MR-2015-0280

    Article  Google Scholar 

  43. Carrizales C, Pelfrey S, Rincon R, Eubanks TM, Kuang A, McClure MJ, Bowlin GL, Macossay J (2008) Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6. Polym Adv Technol 19:124–130. https://doi.org/10.1002/pat.981

    Article  CAS  Google Scholar 

  44. Neisiany RE, Khorasani SN, Lee YKJ, Ramakrishna S (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6:70056–70063. https://doi.org/10.1039/C6RA06434E

    Article  CAS  Google Scholar 

  45. El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A (2012) Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers Polym 13:709–717. https://doi.org/10.1007/s12221-012-0709-4

    Article  CAS  Google Scholar 

  46. Xu W-C, Zhong L-B, Shao Z-D, Dou S, Yu L, Cheng X, Zheng YM (2021) Rational design of pore structures for carbon aerogels to significantly increase adsorption of tetracycline from water using batch and fixed-bed operation. Environ Sci Nano 8:3250–3261. https://doi.org/10.1039/D1EN00459J

    Article  CAS  Google Scholar 

  47. Xu Y, Zou L, Lu H, Kang T (2017) Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Adv 7:4000–4010. https://doi.org/10.1039/C6RA26783A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Muhammad A. Bkkar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5880 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bkkar, M.A., Olekhnovich, R.O., Kremleva, A.V. et al. Properties optimization of electrospun polymer: organic-free perovskite nanofibers by controlling solution concentration. J Polym Res 30, 203 (2023). https://doi.org/10.1007/s10965-023-03578-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03578-w

Keywords

Navigation