Skip to main content
Log in

The relationship between exponent t in McLachlan equation and electronic percolation thresholds of solution cast films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To better understand the relationship between the exponent t in McLachlan's GEM equation and the percolation threshold of conductive polymer composites, in this work, a series of percolation threshold and exponent t pairs were obtained from the percolation curves of different carbon-based fillers utilizing the McLachlan equation. In particular, pairs derived perpendicular and in-plane to the films for binary composite films with carbon fiber of different aspect ratios (AR) as well as pairs derived perpendicular for ternary composite films with different polymer blends and different polymer blend ratios for both carbon black and carbon nanotubes filler were investigated. In these systems, the exponent t for all three fillers is different from the value of 2.0 often referred to as “universal”. Scanning electron microscopy was used to reveal the microscopic morphology of different shape fillers in the solution cast composite films. A schematic diagram was used to illustrate the differences in the conductive pathways formed by different conductive fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiteme C, McLachlan DS (2003) AC and DC conductivity, magnetoresistance, and scaling in cellular percolation systems. Phys Rev B 67(2):024206

    Article  Google Scholar 

  2. McLachlan DS (2021) The percolation exponents for electrical and thermal conductivities and the permittivity and permeability of binary composites. Physica B 606:412658

    Article  CAS  Google Scholar 

  3. Brosseau C (2002) Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins. J Appl Phys 91(5):3197–3204

    Article  CAS  Google Scholar 

  4. Radzuan NAM, Sulong AB, Rao Somalu M (2017) Electrical properties of extruded milled carbon fibre and polypropylene. J Compos Mater 51(22):3187–3195

    Article  CAS  Google Scholar 

  5. Carmona F, Canet R, Delhaes P (1987) Piezoresistivity of heterogeneous solids. J Appl Phys 61(7):2550–2557

    Article  CAS  Google Scholar 

  6. Deprez N, McLachlan DS (1988) The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. J Phys D Appl Phys 21(1):101

    Article  CAS  Google Scholar 

  7. Wu J, McLachlan DS (1998) Scaling behavior of the complex conductivity of graphite-boron nitride percolation systems. Phys Rev B 58(22):14880

    Article  CAS  Google Scholar 

  8. Munawar MA, Schubert DW (2022) Thermal-Induced Percolation Phenomena and Elasticity of Highly Oriented Electrospun Conductive Nanofibrous Biocomposites for Tissue Engineering. Int J Mol Sci 23(15):8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouknaitir I, Aribou N, Elhad Kassim SA, El Hasnaoui M, Melo BMG, Achour ME, Costa LC (2017) Electrical properties of conducting polymer composites: Experimental and modeling approaches. Spectrosc Lett 50(4):196–199

    Article  CAS  Google Scholar 

  10. Kogut PM, Straley JP (1979) Distribution-induced non-universality of the percolation conductivity exponents. J Phys C: Solid State Phys 12(11):2151

    Article  CAS  Google Scholar 

  11. Balberg I (1998) Limits on the continuum-percolation transport exponents. Phys Rev B 57(21):13351

    Article  CAS  Google Scholar 

  12. Halperin BI, Feng S, Sen PN (1985) Differences between lattice and continuum percolation transport exponents. Phys Rev Lett 54(22):2391

    Article  CAS  PubMed  Google Scholar 

  13. Feng S, Halperin BI, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35(1):197

    Article  CAS  Google Scholar 

  14. McLachlan DS, Sauti G, Chiteme C (2007) Static dielectric function and scaling of the ac conductivity for universal and nonuniversal percolation systems. Phys Rev B 76(1):014201

    Article  Google Scholar 

  15. Runyan J, Gerhardt RA, Ruh R (2001) Electrical properties of boron nitride matrix composites: I, Analysis of McLachlan Equation and modeling of the conductivity of boron nitride–boron carbide and boron nitride–silicon carbide composites. J Am Ceram Soc 84(7):1490–1496

    Article  CAS  Google Scholar 

  16. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J Am Ceram Soc 73(8):2187–2203

    Article  CAS  Google Scholar 

  17. Kovacik J (1998) Electrical conductivity of two-phase composite material. Scripta Mater 39(2):153–157

    Article  CAS  Google Scholar 

  18. Xu H, Qu M, Schubert DW (2019) Conductivity of poly (methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos Sci Technol 181:107690

    Article  CAS  Google Scholar 

  19. Xu HG, Qu MC, Pan YM, Schubert DW (2020) Conductivity of poly (methyl methacrylate)/polystyrene/carbon black and poly (ethyl methacrylate)/polystyrene/carbon black ternary composite films. Chin J Polym Sci 38(3):288–297

    Article  CAS  Google Scholar 

  20. Xu H, Schubert DW (2020) Electrical conductivity of polystyrene/poly (n-alkyl methacrylate) s/carbon nanotube ternary composite casting films. J Polym Res 27(6):1–10

    Article  Google Scholar 

  21. Zallen R (1983) The formation of amorphous solids. Wiley, The physics of amorphous solids. New York, pp 1–22

    Book  Google Scholar 

  22. Kassim SE, Achour ME, Costa LC, Lahjomri F (2014) Modelling the DC electrical conductivity of polymer/carbon black composites. J Electrostat 72(3):187–191

    Article  CAS  Google Scholar 

  23. Weng W, Chen G, Wu D, Chen X, Lu J, Wang P (2004) Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposite. J Polym Sci, Part B: Polym Phys 42(15):2844–2856

    Article  CAS  Google Scholar 

  24. Sharma SK, Tandon RP, Sachdev VK (2014) Pre-localized MWCNT network for a low percolation threshold in MWCNT/ABS nanocomposites: experiment and theory. RSC Adv 4(105):60733–60740

    Article  CAS  Google Scholar 

  25. Shrivastava NK, Suin S, Maiti S, Khatua BB (2014) An approach to reduce the percolation threshold of MWCNT in ABS/MWCNT nanocomposites through selective distribution of CNT in ABS matrix. RSC Adv 4(47):24584–24593

    Article  CAS  Google Scholar 

  26. Yi JY, Choi GM (1999) Percolation behavior of conductor-insulator composites with varying aspect ratio of conductive fiber. J Electroceram 3(4):361–369

    Article  CAS  Google Scholar 

  27. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci, Part B: Polym Phys 43(22):3273–3287

    Article  CAS  Google Scholar 

  28. Luo X, Qu M, Schubert DW (2021) Electrical conductivity and fiber orientation of poly (methyl methacrylate)/carbon fiber composite sheets with various thickness. Polym Compos 42(2):548–558

    Article  CAS  Google Scholar 

  29. Xu W, Zhang Y, Jiang J, Liu Z, Jiao Y (2021) Thermal conductivity and elastic modulus of 3D porous/fractured media considering percolation. Int J Eng Sci 161:103456

    Article  CAS  Google Scholar 

  30. Folorunso O, Hamam Y, Sadiku R, Ray SS, Joseph AG (2019) Parametric analysis of electrical conductivity of polymer-composites. Polymers 11(8):1250

    Article  PubMed Central  Google Scholar 

  31. Cooper MA, Erikson WW, Oliver MS (2021) Electrical conductivity of porous binary powder mixtures. Mech Mater 162:104026

    Article  Google Scholar 

  32. Fan D, Tan R, Wei B, Chen P, Zhou J (2021) Broadband microwave absorption performance and theoretical dielectric properties model of hollow porous carbon spheres/expanded polypropylene composite foams. Polymer 234:124262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Muchao Qu thanks the financial support from the Guangdong Provincial Colleges and Universities Youth Innovative Talents Project (2021KQNCX046) and the Scientific and Technological Plan of Guangdong Province, China (No. 2019B090905005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huagen Xu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Qu, M., Chen, B. et al. The relationship between exponent t in McLachlan equation and electronic percolation thresholds of solution cast films. J Polym Res 29, 478 (2022). https://doi.org/10.1007/s10965-022-03330-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03330-w

Keywords

Navigation