Skip to main content

Advertisement

Log in

Silicone elastomers with improved electro-mechanical performance using slide-ring polymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Slide-ring elastomers have attracted a great deal of interest for their use in dielectric elastomer actuators due to their essential soft character and high elasticity. In general, the slide-ring materials’ usage is limited by their reduced compatibility with usually used elastomer precursors and the specific chemical reactions necessary for their embedding into networks. In this study, we obtained a plasticizing effect on poly(dimethylsiloxane) (PDMS) by using polar fillers based on poly (3,4-ethylenedioxythiophene/permethylated β-cyclodextrin) polypseudorotaxane (PEDOT-PMβCD), its corresponding triphenylmethyl-ended PEDOT∙PMβCD polyrotaxane, as well as the reference, PEDOT. The micrometric agglomerates occurred during the thin film manufacturing have a negligible influence on the thermal behavior of PDMS, taking to a decreased Young's modulus, enhancing the elongation at break and the dielectric permittivity. The results and the figures of merit recommend these materials in electromechanical actuators. The best electromechanical performances were obtained using PEDOT-PMβCD filler, with a low Young’s modulus of 0.17 MPa and a doubling of the electromechanical behavior values, up to 5.6% in comparison with those of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpi F, Frediani G, Turco S, De Rossi D (2011) Bioinspired tunable lens with muscle-like electroactive elastomers. Adv Funct Mater 21:4152–4158. https://doi.org/10.1002/adfm.201101253

    Article  CAS  Google Scholar 

  2. Tian M, Yao Y, Liu S, Yang D, Zhang L, Nishi T, Ning N (2015) Separated-structured all-organic dielectric elastomer with large actuation strain under ultralow voltage and high mechanical strength. J Mater Chem A 3:1483–1491. https://doi.org/10.1039/C4TA04197F

    Article  CAS  Google Scholar 

  3. Skov AL, Yu L (2018) Optimization techniques for improving the performance of silicone-based dielectric elastomers. Adv Eng Mater 20:1700762(21pp). https://doi.org/10.1002/adem.201700762

  4. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36. https://doi.org/10.1002/marc.200900425

    Article  CAS  PubMed  Google Scholar 

  5. Racles C, Ursu C, Dascalu M, Asandulesa M, Tiron V, Bele A, Tugui C, Teodoroff-Onesim S (2020) Multi-stimuli responsive free-standing films of DR1-grafted silicones. Chem Eng J 401:126087(14pp). https://doi.org/10.1016/j.cej.2020.126087

  6. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–839. https://doi.org/10.1126/science.287.5454.836

  7. Gallone G, Carpi F, De Rossi D, Levita G, Marchetti A (2007) Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate. Mater Sci Eng C 27:110–116. https://doi.org/10.1016/j.msec.2006.03.003

    Article  CAS  Google Scholar 

  8. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90:012901(3pp). https://doi.org/10.1063/1.2393150

  9. Dimiev A, Zakhidov D, Genorio B, Oladimeji K, Crowgey B, Kempel L, Rothwell EJ, Tour JM (2013) Permittivity of dielectric composite materials comprising graphene nanoribbons. The effect of nanostructure. ACS Appl Mater Interfaces 5:7567–7573. https://doi.org/10.1021/am401859j

    Article  CAS  PubMed  Google Scholar 

  10. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3:2184–2188. https://doi.org/10.1021/am200492q

    Article  CAS  PubMed  Google Scholar 

  11. Barber P, Pellechia PJ, Ploehn HJ, zur Loye HC, (2010) High-dielectric polymer composite materials from a series of mixed-metal phenylphosphonates, ATi(C6H5PO3)3 for dielectric energy storage. ACS Appl Mater Interfaces 5:2553–2559. https://doi.org/10.1021/am1003987

    Article  CAS  Google Scholar 

  12. Molberg M, Crespy D, Rupper P, Nüesch F, Månson JAE, Löwe C, Opris DM (2010) High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater 20:3280–3291. https://doi.org/10.1002/adfm.201000486

    Article  CAS  Google Scholar 

  13. Luo S, Yu S, Sun R, Wong CP (2013) Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl Mater Interfaces 6:176–182. https://doi.org/10.1021/am404556c

    Article  CAS  PubMed  Google Scholar 

  14. Zhao H, Wang DR, Zha JW, Zhao J, Dang ZM (2013) Increased electroaction through a molecular flexibility tuning process in TiO2–polydimethylsilicone nanocomposites. J Mater Chem A 1:3140–3145. https://doi.org/10.1039/C2TA01026G

    Article  CAS  Google Scholar 

  15. Yang D, Tian M, Dong Y, Liu H, Yu Y, Zhang L (2012) Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer. Smart Mater Struct 21:035017(6pp). https://doi.org/10.1088/0964-1726/21/3/035017

  16. Racles C, Cozan V, Bele A, Dascalu M (2016) Polar silicones: structure-dielectric properties relationship. Des Monomers Polym 19:496–507. https://doi.org/10.1080/15685551.2016.1169381

    Article  CAS  Google Scholar 

  17. Madsen FB, Yu L, Mazurek PS, Skov AL (2016) A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers. Smart Mater Struct 25:075018 (14pp). https://doi.org/10.1088/0964-1726/25/7/075018

  18. Opris DM (2018) Polar elastomers as novel materials for electromechanical actuator applications. Adv Mater 30:1703678(23pp). https://doi.org/10.1002/adma.201703678

  19. Madsen FB, Daugaard AE, Hvilsted S, Skov AL (2016) The current state of silicone-based dielectric elastomer transducers. Macromol Rapid Commun 37(5):378–413. https://doi.org/10.1002/marc.201500576

    Article  CAS  PubMed  Google Scholar 

  20. Yu L, Skov AL (2018) Molecular strategies for improved dielectric elastomer electrical breakdown strengths. Macromol Rapid Commun 39:1800383(6pp). https://doi.org/10.1002/marc.201800383

  21. Racles C, Bele A, Dascalu M, Musteata VE, Varganici CD, Ionita D, Vlad S, Cazacu M, Duenki SJ, Opris DM (2015) Polar-nonpolar interconnected elastic networks with increased permittivity and high breakdown fields for dielectric elastomer transducers. RSC Adv 5(72):58428–58438. https://doi.org/10.1039/C5RA06865G

    Article  CAS  Google Scholar 

  22. Skov AL, Yu L (2018) Optimization techniques for improving the performance of silicone-based dielectric elastomers. Adv Eng Mater 20(5):1700762(21pp). https://doi.org/10.1002/adem.201700762

  23. Cazacu M, Racles C, Zaltariov M-F, Dascalu M, Bele A, Tugui C, Bargan A, Stiubianu G (2021) From amorphous silicones to Si-containing highly ordered polymers: Some Romanian contributions in the field. Polymers 13:1605(21pp). https://doi.org/10.3390/polym13101605

  24. Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic-inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and γ-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136. https://doi.org/10.1021/ma9011895

    Article  CAS  Google Scholar 

  25. Wu J, He H, Chao G (2010) β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules 43:2252–2260. https://doi.org/10.1021/ma902255v

    Article  CAS  Google Scholar 

  26. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327. https://doi.org/10.1038/356325a0

    Article  CAS  Google Scholar 

  27. Fujita H, Ooya T, Yui N (1999) Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-Cyclodextrins and poly(ethylene glycol)-poly(propylene glycol) triblock copolymer. Macromolecules 32:2534–2541. https://doi.org/10.1021/ma9814550

    Article  CAS  Google Scholar 

  28. Ohmori K, Abu Bin I, Seki T, Liu C, Mayumi K, Ito K, Takeoka Y (2016) Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility. Chem Commun (Camb) 52:13757–13759. https://doi.org/10.1039/c6cc07641f

    Article  CAS  Google Scholar 

  29. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 5:5124(8pp). https://doi.org/10.1038/ncomms6124

  30. Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luan Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3:9468–9479.https://doi.org/10.1039/C5TA01182E

  31. Okumura Y, Ito K (2001) The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater 13(7):485–487

    Article  CAS  Google Scholar 

  32. Zhuo Y, Li T, Wang F, Håkonsen V, Xiao S, He J, Zhang Z (2019) Ultra-durable icephobic coating by molecular pulley. Soft Matter 15:3607–3611. https://doi.org/10.1039/C9SM00162J

    Article  CAS  PubMed  Google Scholar 

  33. Minato K, Mayumi K, Maeda R, Kato K, Yokoyama H, Ito K (2017) Mechanical properties of supramolecular elastomers prepared from polymer-grafted polyrotaxane. Polymer 128:386–391. https://doi.org/10.1016/j.polymer.2017.02.090

    Article  CAS  Google Scholar 

  34. Facchetti A (2011) π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758. https://doi.org/10.1021/cm102419z

    Article  CAS  Google Scholar 

  35. Xue J (2010) Perspectives on organic photovoltaics Polym Rev 50:411–419. https://doi.org/10.1080/15583724.2010.515766

    Article  CAS  Google Scholar 

  36. Liang Y, Yu L (2010) Development of semiconducting polymers for solar energy harvesting. Polym Rev 50:454–473. https://doi.org/10.1080/15583724.2010.515765

    Article  CAS  Google Scholar 

  37. Brovelli S, Cacialli F (2010) Optical and electroluminescent properties of conjugated polyrotaxanes. Small 6:2796–2820. https://doi.org/10.1002/smll.201001881

    Article  CAS  PubMed  Google Scholar 

  38. Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chemie Int Ed 46:1028–1064. https://doi.org/10.1002/anie.200601780

    Article  CAS  Google Scholar 

  39. Putnin T, Le H, Bui T-T, Jakmunee J, Ounnunkad K, Péralta S, Aubert P-H, Goubard F, Farcas A (2018) Poly(3,4-ethylenedioxythiophene/permethylated β-cyclodextrin) polypseudorotaxane and polyrotaxane: Synthesis, characterization and application as hole transporting materials in perovskite solar cells. Eur Polym J 105:250–256. https://doi.org/10.1016/j.eurpolymj.2018.06.005

    Article  CAS  Google Scholar 

  40. Araki J, Kataoka T, Ito K (2008) Preparation of a “sliding graft copolymer”, an organic solvent-soluble polyrotaxane containing mobile side chains, and its application for a crosslinked elastomeric supramolecular film. Soft Matter 4:245–249. https://doi.org/10.1039/B715231K

    Article  PubMed  Google Scholar 

  41. Mayumi K, Ito K, Kato K (2016) Polyrotaxane and Slide-Ring Materials. The Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781782622284

    Article  Google Scholar 

  42. Noda Y, Hayashi Y, Ito K (2014) From topological gels to slide-ring materials. J Appl Polym Sci 131:40509(9pp). https://doi.org/10.1002/APP.40509

  43. Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luane Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3:9468–9479. https://doi.org/10.1039/c5ta01182e

    Article  CAS  Google Scholar 

  44. Du R, Xu Z, Zhu C, Jiang Y, Yan H, Wu H-C, Vardoulis O, Cai Y, Zhu X, Bao Z, Zhang Q, Jia X (2020) A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv Funct Mater 30:1907139(9pp). https://doi.org/10.1002/adfm.201907139

  45. Marciniec B (2009) Functionalisation and cross-linking of organosilicon polymers, Hydrosilylation: A comprehensive review on recent advances, B. Marciniec, Ed., Springer Netherlands, Dordrecht 159–189

  46. Tran J-A, Madsen J, Skov AL (2020) Utilizing slide-ring cross-linkers in polysiloxane networks for softer dielectric elastomer actuators. Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 1137518. https://doi.org/10.1117/12.2557355

  47. Tran J-A, Madsen J, Skov AL (2021) Novel polyrotaxane cross-linkers as a versatile platform for slide-ring silicone. Bioinspir Biomim 16:025002(10pp). https://doi.org/10.1088/1748-3190/abdd9f

  48. Cazacu M, Racles C, Vlad A, Antohe M, Forna N (2009) Silicone-based Composite for Relining of Removable Dental Prosthesis. J Compos Mater 43:2045–2055. https://doi.org/10.1177/0021998309340447

    Article  CAS  Google Scholar 

  49. Carpi F, Anderson I, Bauer S, Frediani G, Gallone G, Gei M, Graaf C, Jean-Mistral C, Kaal W, Kofod G, Kollosche M, Kornbluh RD, Lassen B, Matysek M, Michel S, Nowak S, O’Brien B, Pei Q, Pelrine R, Rechenbach B, Rosset S, Shea HR (2015) Standards for dielectric elastomer transducers. Smart Mater Struct 24:105025. https://doi.org/10.1088/0964-1726/24/10/105025

    Article  CAS  Google Scholar 

  50. Xie Y, Zhang S-H, Jiang H-Y, Zeng H, Wu R-M, Chen H, Gao Y-F, Huang Y-Y, Bai H-L (2019) Properties of carbon black-PEDOT composite prepared via in-situ chemical oxidative polymerization. e-Polymers 19:61–69. https://doi.org/10.1515/epoly-2019-0008

  51. Voronkov MG, Mileshkevich VP, Yuzhelevskii YuA (1978) The siloxane bond, Physical properties and chemical transformations, Consultants Bureau, New York and London

  52. Hyeok Choi U, Liang S, Chen Q, Runt J, Colby RH (2016) Segmental dynamics and dielectric constant of polysiloxane polar copolymers as plasticizers for polymer electrolytes. ACS Appl Mater Interfaces 8:3215–3225. https://doi.org/10.1021/acsami.5b10797

    Article  CAS  PubMed  Google Scholar 

  53. Cadogan DF, Howick CJ (1996) Plasticizers. John Wiley & Sons

    Google Scholar 

  54. Bele A, Cazacu M, Stiubianu G, Vlad S (2014) Silicone-barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Adv 4:58522–58529. https://doi.org/10.1039/c4ra09903f

    Article  CAS  Google Scholar 

  55. Racles C, Musteata VE, Bele A, Dascalu M, Tugui C, Matricala AL (2015) Highly stretchable composites from PDMS and polyazomethine fine particles. RSC Adv 5:102599–102609. https://doi.org/10.1039/c5ra12297j

    Article  CAS  Google Scholar 

  56. Kremer F, Schonhals A, Luck W (2002) Broadband dielectric spectroscopy. Springer-Verlag, Berlin

    Google Scholar 

  57. Racles C, Alexandru M, Musteata V, Bele A, Cazacu M, Opris DM (2014) Tailoring the dielectric properties of silicones by chemical modification, in: Recent Res. Dev. Polym. Sci., Transworld Research Network, Kerala, India pp 17–36

  58. Dascalu M, Iacob M, Tugui C, Bele A, Stiubianu G-T, Racles C, Cazacu M (2021) Octakis(phenyl)-T8-silsesquioxane-filled silicone elastomers with enhanced electromechanical capability. J Appl Polym Sci 138:e50161 (10pp). https://doi.org/10.1002/app.50161

  59. Razak AHA, Szabo P, Skov AL (2015) Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers. RSC Adv 5:53054–53062. https://doi.org/10.1039/c5ra09708h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P1-1.1-PD-2019-0148 (SilWebWEH), within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Dascalu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4712 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bele, A., Dascalu, M., Tugui, C. et al. Silicone elastomers with improved electro-mechanical performance using slide-ring polymers. J Polym Res 29, 202 (2022). https://doi.org/10.1007/s10965-022-03051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03051-0

Keywords

Navigation