Skip to main content

Advertisement

Log in

Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bone defects in the craniomaxillofacial (CMF) region occur as a result of trauma, cancer excisions, congenital defects and deformities. CMF bone reconstruction is challenging due to anatomical complexity, functionality and aesthetic conditions. Bone grafting is the current standard approach to reconstruct CMF injuries. However, it possesses certain limitations to restore the structural and functional defects of CMF bone. To overcome these limitations, tissue engineering and regenerative methodologies have been developed to reconstruct damaged bone tissues. Various biomaterial scaffolds made up of synthetic, natural and ceramics materials have been used to repair craniofacial bone tissues. In this review, we have first discussed the structure of CMF bone, bone tissue engineering and mechanical properties required for CMF bone tissue engineering. Subsequently, a detailed survey on the recent research innovations of tissue engineering with various types of biomaterial scaffolds, stem-cell sources, growth factors and functional scaffold fabrication techniques to repair and remodel the CMF defects has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Royal Society of chemistry [122]

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from ref [36]

Fig. 7

Adapted from ref. [16]

Fig. 8
Fig. 9
Fig. 10

Reproduced from ref. [86]

Similar content being viewed by others

References

  1. Zhang W, Yelick PC (2018) Craniofacial Tissue Engineering. Cold Spring Harb Perspect Med 8:a025775. https://doi.org/10.1101/cshperspect.a025775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mobini S, Ayoub A (2016) Bone Tissue Engineering in the Maxillofacial Region: The State-of-the-Art Practice and Future Prospects. J Regen Reconstr Restor Triple R 1:8–8. https://doi.org/10.22037/rrr.v1i1.10518

  3. Kinoshita Y, Maeda H (2013) Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications. Sci World J 2013:1–21. https://doi.org/10.1155/2013/863157

    Article  CAS  Google Scholar 

  4. Tabatabaei FS, Motamedian SR, Gholipour F et al Craniomaxillofacial Bone Engineering by Scaffolds Loaded with Stem Cells: A Systematic Review. 18

  5. Kraft A, Abermann E, Stigler R et al (2012) Craniomaxillofacial Trauma: Synopsis of 14,654 Cases with 35,129 Injuries in 15 Years. Craniomaxillofacial Trauma Reconstr 5:41–49. https://doi.org/10.1055/s-0031-1293520

    Article  Google Scholar 

  6. Costello BJ, Shah G, Kumta P, Sfeir CS (2010) Regenerative Medicine for Craniomaxillofacial Surgery. Oral Maxillofac Surg Clin N Am 22:33–42. https://doi.org/10.1016/j.coms.2009.10.009

    Article  Google Scholar 

  7. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  8. Wu V, Helder MN, Bravenboer N et al (2019) Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019:6279721. https://doi.org/10.1155/2019/6279721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. BDS, Department of Oral and Maxillofacial Surgery, Tamil Nadu Government Dental College & Hospital, Chennai, India, Angeline L DrR, T. DrR et al (2019) Role of tissue engineering in oral & maxillofacial surgery – a review. Int J Med Res Rev 7:115–121. https://doi.org/10.17511/ijmrr.2019.i02.11

  10. Orthopaedic Research and Biotechnology, Research Building, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia, Murphy C, O’Brien F et al (2013) Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 26:120–132. https://doi.org/10.22203/eCM.v026a09

  11. Thrivikraman G, Athirasala A, Twohig C et al (2017) Biomaterials for Craniofacial Bone Regeneration. Dent Clin North Am 61:835–856. https://doi.org/10.1016/j.cden.2017.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin K, Zhang D, Macedo MH et al (2019) Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater 29:1804943. https://doi.org/10.1002/adfm.201804943

    Article  CAS  Google Scholar 

  13. Tevlin R, McArdle A, Atashroo D et al (2014) Biomaterials for Craniofacial Bone Engineering. J Dent Res 93:1187–1195. https://doi.org/10.1177/0022034514547271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gareb B, Roossien CC, van Bakelen NB et al (2020) Comparison of the mechanical properties of biodegradable and titanium osteosynthesis systems used in oral and maxillofacial surgery. Sci Rep 10:18143. https://doi.org/10.1038/s41598-020-75299-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pijls BG, Sanders IMJG, Kuijper EJ, Nelissen RGHH (2018) Segmental induction heating of orthopaedic metal implants. Bone Jt Res 7:609–619. https://doi.org/10.1302/2046-3758.711.BJR-2018-0080.R1

    Article  CAS  Google Scholar 

  16. Martín-del-Campo M, Fernández-Villa D, Cabrera-Rueda G, Rojo L (2020) Antibacterial Bio-Based Polymers for Cranio-Maxillofacial Regeneration Applications. Appl Sci 10:8371. https://doi.org/10.3390/app10238371

    Article  CAS  Google Scholar 

  17. Penmetsa SLD, Shah R, Thomas R et al (2017) Titanium particles in tissues from peri-implant mucositis: An exfoliative cytology-based pilot study. J Indian Soc Periodontol 21:192–194. https://doi.org/10.4103/jisp.jisp_184_16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hardt N (2019) Mechanisms of Craniofacial Fractures. In: Hardt N, Kessler P, Kuttenberger J (eds) Craniofacial Trauma: Diagnosis and Management. Springer International Publishing, Cham, pp 55–61

    Chapter  Google Scholar 

  19. Jin S-W, Sim K-B, Kim S-D (2016) Development and Growth of the Normal Cranial Vault : An Embryologic Review. J Korean Neurosurg Soc 59:192–196. https://doi.org/10.3340/jkns.2016.59.3.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaihre B, Uswatta S, Jayasuriya A (2017) Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 8:49.https://doi.org/10.3390/jfb8040049

  21. Puertas-Bartolomé M, Mora-Boza A, García-Fernández L (2021) Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers 13:1209.https://doi.org/10.3390/polym13081209

  22. Yazdanian M, Arefi AH, Alam M et al (2021) Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview. J Mater Res Technol 15:1217–1251. https://doi.org/10.1016/j.jmrt.2021.08.083

    Article  CAS  Google Scholar 

  23. Banigo AT, Iwuji SC, Iheaturu NC (2019) Application of Biomaterials in Tissue Engineering: A Review. 16

  24. Dolcimascolo A, Calabrese G, Conoci S, Parenti R (2019) Innovative Biomaterials for Tissue Engineering. In: Barbeck M, Jung O, Smeets R, Koržinskas T (eds) Biomaterial-supported Tissue Reconstruction or Regeneration. IntechOpen

  25. Shi C, Yuan Z, Han F et al (2016) Polymeric biomaterials for bone regeneration. Ann Jt 1:27–27. https://doi.org/10.21037/aoj.2016.11.02

  26. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matassi F, Nistri L, Chicon Paez D, Innocenti M (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8:21–24

    PubMed  PubMed Central  Google Scholar 

  28. Parivatphun T, Sangkert S, Kokoo R et al (2022) Biphasic scaffolds of polyvinyl alcohol with silk fibroin for oral and maxillofacial surgery based on mimicking materials design: fabrication, characterization, properties. J Mater Sci 57:2131–2148. https://doi.org/10.1007/s10853-021-06718-z

    Article  CAS  Google Scholar 

  29. Florczyk SJ, Leung M, Jana S et al (2012) Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A 100:3408–3415. https://doi.org/10.1002/jbm.a.34288

    Article  CAS  PubMed  Google Scholar 

  30. Rahman MS, Rana MM, Spitzhorn L-S et al (2019) Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater 8:137–154. https://doi.org/10.1007/s40204-019-0113-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Holzwarth JM, Ma PX (2012) Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering: Functionalized Synthetic Biodegradable Polymer Scaffolds. Macromol Biosci 12:911–919. https://doi.org/10.1002/mabi.201100466

    Article  CAS  PubMed  Google Scholar 

  32. Wei Q, Deng N-N, Guo J, Deng J (2018) Synthetic Polymers for Biomedical Applications. Int J Biomater 2018:1–2. https://doi.org/10.1155/2018/7158621

    Article  CAS  Google Scholar 

  33. Venkatesan J, Qian Z-J, Ryu B et al (2011) Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577. https://doi.org/10.1016/j.carbpol.2010.08.019

    Article  CAS  Google Scholar 

  34. Piitulainen JM, Kauko T, Aitasalo KMJ et al (2015) Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg 83:708–714. https://doi.org/10.1016/j.wneu.2015.01.014

    Article  PubMed  Google Scholar 

  35. Cavalu S Microstructure and bioactivity of acrylic bone cements for prosthetic surgery. J Optoelectron Adv Mater

  36. Fernandes da Silva AL, Borba AM, Simão NR et al (2014) Customized Polymethyl Methacrylate Implants for the Reconstruction of Craniofacial Osseous Defects. Case Rep Surg 2014:e358569.https://doi.org/10.1155/2014/358569

  37. Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S et al (2020) Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers 12:1469.https://doi.org/10.3390/polym12071469

  38. Yun JW, Heo SY, Lee MH, Lee HB (2019) Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model. Veterinární Medicína 64 (2019):531–538. https://doi.org/10.17221/80/2019-VETMED

  39. Harikrishnan P, Islam H, Sivasamy A (2019) Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration. J Craniofac Surg 30:265–269. https://doi.org/10.1097/SCS.0000000000004857

    Article  PubMed  Google Scholar 

  40. Song T, Qiu Z-Y, Cui F-Z (2015) Biomaterials for reconstruction of cranial defects. Front Mater Sci 9:346–354. https://doi.org/10.1007/s11706-015-0312-x

    Article  Google Scholar 

  41. Lobo SE, Livingston Arinzeh T (2010) Biphasic Calcium Phosphate Ceramics for Bone Regeneration and Tissue Engineering Applications. Materials 3:815–826. https://doi.org/10.3390/ma3020815

    Article  CAS  PubMed Central  Google Scholar 

  42. Sangkert S, Kamolmatyakul S, Meesane J (2020) The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering. J Appl Biomater Funct Mater 18:228080001989320. https://doi.org/10.1177/2280800019893204

    Article  CAS  Google Scholar 

  43. Yousefi A-M (2019) A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J Appl Biomater Funct Mater 17:228080001987259. https://doi.org/10.1177/2280800019872594

    Article  CAS  Google Scholar 

  44. Pappachan B, Alexander M (2012) Biomechanics of Cranio-Maxillofacial Trauma. J Maxillofac Oral Surg 11:224–230. https://doi.org/10.1007/s12663-011-0289-7

    Article  PubMed  Google Scholar 

  45. Prasadh S (2018) Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 8

  46. Santos GA dos (2017) The Importance of Metallic Materials as Biomaterials. Adv Tissue Eng Regen Med Open Access 3:. https://doi.org/10.15406/atroa.2017.03.00054

  47. Li P, Zhang W, Dai J et al (2019) Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Mater Sci Eng C 103:109826. https://doi.org/10.1016/j.msec.2019.109826

    Article  CAS  Google Scholar 

  48. Ashammakhi N, Gonzalez AM, Törmälä P, Jackson IT (2004) New resorbable bone fixation. Biomaterials in craniomaxillofacial surgery: Present and future. Eur J Plast Surg 26:383–390. https://doi.org/10.1007/s00238-003-0568-8

    Article  Google Scholar 

  49. Jardini AL, Larosa MA, de Carvalho Zavaglia CA et al (2014) Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery: This paper discusses the design and fabrication of a metallic implant for the reconstruction of a large cranial defect. Virtual Phys Prototyp 9:115–125. https://doi.org/10.1080/17452759.2014.900857

    Article  Google Scholar 

  50. Luo X, Huang H, Yin X et al (2019) Functional stability analyses of maxillofacial skeleton bearing cleft deformities. Sci Rep 9:4261.https://doi.org/10.1038/s41598-019-40478-w

  51. Qu H, Fu H, Han Z, Sun Y (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9:26252–26262. https://doi.org/10.1039/C9RA05214C

    Article  CAS  Google Scholar 

  52. Oryan A, Alidadi S Application of Bioceramics in Orthope- dics and Bone Tissue Engineering. Bone Regen 72

  53. Shang Q, Wang Z, Liu W et al (2001) Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg 12:586–93; discussion 594–5. https://doi.org/10.1097/00001665-200111000-00017

  54. Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518. https://doi.org/10.1038/nbt818

    Article  CAS  PubMed  Google Scholar 

  55. Schierano G, Mussano F, Faga MG et al (2015) An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results. BioMed Res Int 2015:157360. https://doi.org/10.1155/2015/157360

  56. Gaihre B, Uswatta S, Jayasuriya AC (2017) Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 8.https://doi.org/10.3390/jfb8040049

  57. Zhang J, Chen J (2017) Bone Tissue Regeneration - Application of Mesenchymal Stem Cells and Cellular and Molecular Mechanisms. Curr Stem Cell Res Ther 12:357–364. https://doi.org/10.2174/1574888X11666160921121555

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Wang P, Chen W et al (2014) Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomater 10:4484–4493. https://doi.org/10.1016/j.actbio.2014.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rindone AN, Kachniarz B, Achebe CC et al (2019) Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts. Adv Healthc Mater 8:e1801565. https://doi.org/10.1002/adhm.201801565

    Article  CAS  PubMed  Google Scholar 

  60. Potdar PD, Jethmalani YD (2015) Human dental pulp stem cells: Applications in future regenerative medicine. World J Stem Cells 7:839–851. https://doi.org/10.4252/wjsc.v7.i5.839

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dimitrova-Nakov S, Harichane Y, Goldberg M, Kellermann O (2013) Dental stem cells: Progress and perspectives. World J Stomatol 2:35–39. https://doi.org/10.5321/wjs.v2.i3.35

    Article  Google Scholar 

  62. d’Aquino R, De Rosa A, Lanza V et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83. https://doi.org/10.22203/ecm.v018a07

  63. Liu C, Tan X, Luo J et al (2014) Reconstruction of Beagle Hemi-Mandibular Defects with Allogenic Mandibular Scaffolds and Autologous Mesenchymal Stem Cells. PLoS One 9:e105733.https://doi.org/10.1371/journal.pone.0105733

  64. Gjerde C, Mustafa K, Hellem S et al (2018) Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 9:213. https://doi.org/10.1186/s13287-018-0951-9

    Article  PubMed  PubMed Central  Google Scholar 

  65. Panicker PP, Mohan SP, Nallusamy J et al (2020) Reconstruction of craniofacial bone defects with autologous human bone marrow stem cells and autogenous bone grafts: A case report with review of literature. J Pharm Bioallied Sci 12:394. https://doi.org/10.4103/jpbs.JPBS_116_20

    Article  Google Scholar 

  66. Lendeckel S, Jödicke A, Christophis P et al (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Cranio-Maxillofac Surg 32:370–373. https://doi.org/10.1016/j.jcms.2004.06.002

    Article  Google Scholar 

  67. Gali RS, Chinnaswamy R, Devireddy SK et al (2018) Concentrated Bone Marrow Aspirate-Coated Hydroxyapatite for Reconstruction of Small-to-Moderate-Sized Mandibular Defects Caused by the Removal of Benign Pathologies. Contemp Clin Dent 9:535–540. https://doi.org/10.4103/ccd.ccd_745_18

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170. https://doi.org/10.1098/rsif.2010.0223

    Article  CAS  PubMed  Google Scholar 

  69. Azevedo HS, Pashkuleva I (2015) Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev 94:63–76. https://doi.org/10.1016/j.addr.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  70. Nyberg E, Holmes C, Witham T, Grayson WL (2016) Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res 6:184–194. https://doi.org/10.1007/s13346-015-0233-3

    Article  CAS  PubMed  Google Scholar 

  71. Samorezov JE, Alsberg E (2015) Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 84:45–67. https://doi.org/10.1016/j.addr.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  72. King WJ, Krebsbach PH (2012) Growth factor delivery: How surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev 64:1239–1256. https://doi.org/10.1016/j.addr.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen F, Ma Z, Dong G, Wu Z (2009) Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery. Acta Pharmacol Sin 30:485–493. https://doi.org/10.1038/aps.2009.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tollemar V, Collier ZJ, Mohammed MK et al (2016) Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 3:56–71. https://doi.org/10.1016/j.gendis.2015.09.004

    Article  PubMed  Google Scholar 

  75. van Hout WMMT, Mink van der Molen AB, Breugem CC et al (2011) Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. Clin Oral Investig 15:297–303. https://doi.org/10.1007/s00784-011-0547-6

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sukul M, Nguyen TBL, Min Y-K et al (2015) Effect of Local Sustainable Release of BMP2-VEGF from Nano-Cellulose Loaded in Sponge Biphasic Calcium Phosphate on Bone Regeneration. Tissue Eng Part A 21:1822–1836. https://doi.org/10.1089/ten.tea.2014.0497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 337.https://doi.org/10.2147/IJN.S38635

  79. Subia B, Kundu JCS (2010) Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. In: Eberli D (ed) Tissue Engineering. InTech

  80. Salehi M, Nosar MN, Amani A et al (2015) Preparation of Pure PLLA, Pure Chitosan, and PLLA/Chitosan Blend Porous Tissue Engineering Scaffolds by Thermally Induced Phase Separation Method and Evaluation of the Corresponding Mechanical and Biological Properties. Int J Polym Mater Polym Biomater 64:675–682. https://doi.org/10.1080/00914037.2014.1002093

    Article  CAS  Google Scholar 

  81. Miszuk JM, Hu J, Sun H (2020) Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. ACS Appl Bio Mater 3:6538–6545. https://doi.org/10.1021/acsabm.0c00946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Varshney N, Sahi A, Vajanthri K et al (2019) Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology 71.https://doi.org/10.1007/s10616-018-0285-6

  83. Salinas AJ, Vallet-Regí M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3:11116. https://doi.org/10.1039/c3ra00166k

    Article  CAS  Google Scholar 

  84. Zhang D, George OJ, Petersen KM et al (2014) A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605. https://doi.org/10.1016/j.actbio.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  85. Gürbüz S, Demirtaş TT, Yüksel E et al (2016) Multi-layered functional membranes for periodontal regeneration: Preparation and characterization. Mater Lett 178:256–259. https://doi.org/10.1016/j.matlet.2016.05.054

    Article  CAS  Google Scholar 

  86. Rahman SU, Nagrath M, Ponnusamy S, Arany PR (2018) Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. Materials 11:1478. https://doi.org/10.3390/ma11081478

    Article  CAS  PubMed Central  Google Scholar 

  87. Aksorn P, Chaikiawkeaw D, Sastravaha P et al Osteoconductivity Evaluation of 3-Dimensional Dual-leached Polycaprolactone Scaffold. 9

  88. Mehrabanian M, Nasr-Esfahani M (2011) HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int J Nanomedicine 6:1651–1659. https://doi.org/10.2147/IJN.S21203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shin M, Abukawa H, Troulis MJ, Vacanti JP (2008) Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. J Biomed Mater Res A 84A:702–709. https://doi.org/10.1002/jbm.a.31392

    Article  CAS  Google Scholar 

  90. aur K, Singh KJ, Anand V et al (2017) 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate / hydroxyl apatite nano particle scaffolds: Potential materials for bone regeneration applications. AIP Conf Proc 1837:040010.https://doi.org/10.1063/1.4982094

  91. Eltom A, Zhong G, Muhammad A (2019) Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng 2019:1–13. https://doi.org/10.1155/2019/3429527

    Article  CAS  Google Scholar 

  92. Tiffany AS, Gray DL, Woods TJ et al (2019) The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomater 93:86–96. https://doi.org/10.1016/j.actbio.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  94. Jiménez CL, Melandri CG, Haidar ZS (2016) Complexes Using a Novel Self-Assembling Peptide Nanofibrous Hydrogel. 12

  95. Chamieh F, Collignon A-M, Coyac BR et al (2016) Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep 6:38814. https://doi.org/10.1038/srep38814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bambole V, Yakhmi JV (2016) Tissue engineering. In: Nanobiomaterials in Soft Tissue Engineering. Elsevier 387–455

  97. Turnbull G, Clarke J, Picard F et al (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  PubMed  Google Scholar 

  98. Montjovent M-O, Mathieu L, Schmoekel H et al (2007) Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming. J Biomed Mater Res A 83A:41–51. https://doi.org/10.1002/jbm.a.31208

    Article  CAS  Google Scholar 

  99. Varshney N, Sahi A, Poddar S, Mahto S (2020) Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization. Int J Biol Macromol 160.https://doi.org/10.1016/j.ijbiomac.2020.05.090

  100. Jun I, Han H-S, Edwards J, Jeon H (2018) Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int J Mol Sci 19:745. https://doi.org/10.3390/ijms19030745

    Article  CAS  PubMed Central  Google Scholar 

  101. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review. Plasma Process Polym 3:392–418. https://doi.org/10.1002/ppap.200600021

    Article  CAS  Google Scholar 

  102. Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56. https://doi.org/10.22203/ecm.v011a06

  103. Shao W, He J, Sang F et al (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351. https://doi.org/10.1016/j.msec.2015.08.046

    Article  CAS  Google Scholar 

  104. Zheng X, Wang W, Liu S et al (2016) Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid. Mater Sci Eng C Mater Biol Appl 58:1071–1076. https://doi.org/10.1016/j.msec.2015.07.066

    Article  CAS  PubMed  Google Scholar 

  105. Weng L, Boda SK, Wang H et al (2018) Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Adv Healthc Mater 7:1701415. https://doi.org/10.1002/adhm.201701415

    Article  CAS  Google Scholar 

  106. Zhang K, Wang S, Zhou C et al (2018) Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 6:31. https://doi.org/10.1038/s41413-018-0032-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thadavirul N, Pavasant P, Supaphol P (2014) Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering: Development Of Polycaprolactone Porous Scaffolds. J Biomed Mater Res A 102:3379–3392. https://doi.org/10.1002/jbm.a.35010

    Article  CAS  PubMed  Google Scholar 

  108. Henkel J, Hutmacher DW (2013) Design and fabrication of scaffold-based tissue engineering. Bio Nano Mater 14.https://doi.org/10.1515/bnm-2013-0021

  109. Xie Z, Gao M, Lobo AO, Webster TJ (2020) 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers 12:1717. https://doi.org/10.3390/polym12081717

    Article  CAS  PubMed Central  Google Scholar 

  110. Qu H (2020) Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun 24:101024. https://doi.org/10.1016/j.mtcomm.2020.101024

    Article  CAS  Google Scholar 

  111. Salah M, Tayebi L, Moharamzadeh K, Naini FB (2020) Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 42:18. https://doi.org/10.1186/s40902-020-00263-6

    Article  PubMed  PubMed Central  Google Scholar 

  112. Seidenstuecker M, Kerr L, Bernstein A et al (2017) 3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds. Materials 11.https://doi.org/10.3390/ma11010013

  113. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration | SpringerLink. https://doi.org/10.1007/s10856-018-6208-4?shared-article-renderer. Accessed 28 Sep 2020

  114. Meglioli M, Naveau A, Macaluso GM, Catros S (2020) 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med 6:1–19. https://doi.org/10.1186/s41205-020-00082-5

  115. G Noureldin M, Y Dessoky N (2020) 3D Printing: Towards the Future of Oral and Maxillofacial Surgery. Acta Sci Dent Scienecs 4:107–112. https://doi.org/10.31080/ASDS.2020.04.0870

  116. Klammert U, Gbureck U, Vorndran E et al (2010) 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillo-fac Surg Off Publ Eur Assoc Cranio-Maxillo-fac Surg 38:565–570. https://doi.org/10.1016/j.jcms.2010.01.009

    Article  Google Scholar 

  117. Nair MA, Shaik KV, Kokkiligadda A, Gorrela H (2020) Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells. 13:8

  118. Tian T, Zhang T, Lin Y, Cai X (2018) Vascularization in Craniofacial Bone Tissue Engineering. J Dent Res 97:969–976. https://doi.org/10.1177/0022034518767120

    Article  CAS  PubMed  Google Scholar 

  119. Nikolidakis D, Meijer GJ, Oortgiesen DAW et al (2009) The effect of a low dose of transforming growth factor β1 (TGF-β1) on the early bone-healing around oral implants inserted in trabecular bone. Biomaterials 30:94–99. https://doi.org/10.1016/j.biomaterials.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  120. Liao W, Xu L, Wangrao K et al (2019) Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. Peer J 7.https://doi.org/10.7717/peerj.7271

  121. Shakya AK, Kandalam U (2017) Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg 55:875–891. https://doi.org/10.1016/j.bjoms.2017.09.007

    Article  PubMed  Google Scholar 

  122. Dewey JMC, Harley BA (2021) Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 11:17809–17827. https://doi.org/10.1039/D1RA02557K

    Article  CAS  PubMed  Google Scholar 

  123. Sanchez-Lara PA, Zhao H, Bajpai R et al (2012) Impact of Stem Cells in Craniofacial Regenerative Medicine. Front Physiol 3.https://doi.org/10.3389/fphys.2012.00188

  124. Farokhi M, Mottaghitalab F, Samani S et al (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36:68–91. https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  125. Meng X, Gong K, Sun C et al (2020) Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering. J Craniofac Surg 31:416–419. https://doi.org/10.1097/SCS.0000000000006020

    Article  PubMed  Google Scholar 

  126. Perrone GS, Leisk GG, Lo TJ et al (2014) The use of silk-based devices for fracture fixation. Nat Commun 5:3385. https://doi.org/10.1038/ncomms4385

    Article  CAS  PubMed  Google Scholar 

  127. Thai TH, Nuntanaranont T, Kamolmatyakul S, Meesane J (2017) In vivo evaluation of modified silk fibroin scaffolds with a mimicked microenvironment of fibronectin/decellularized pulp tissue for maxillofacial surgery. Biomed Mater 13:015009. https://doi.org/10.1088/1748-605X/aa853e

    Article  PubMed  Google Scholar 

  128. Sangkert S, Meesane J, Kamonmattayakul S, Chai W (2015) Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Mater Sci Eng C 58. https://doi.org/10.1016/j.msec.2015.09.031

  129. Park D-J, Choi B-H, Zhu S-J et al (2005) Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. J Cranio-Maxillofac Surg 33:50–54. https://doi.org/10.1016/j.jcms.2004.05.011

    Article  Google Scholar 

  130. Fan J, Park H, Lee MK et al (2014) Adipose-Derived Stem Cells and BMP-2 Delivery in Chitosan-Based 3D Constructs to Enhance Bone Regeneration in a Rat Mandibular Defect Model. Tissue Eng Part A 20:2169–2179. https://doi.org/10.1089/ten.tea.2013.0523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hoque ME, Nuge T, Yeow TK, Nordin N Gelatin based scaffolds for tissue engineering. A Review. 19

  132. Samieirad S, Eshghpour M, Tohidi E et al Using Absorbable Gelatin Sponge to Facilitate Sinus Membrane Elevation during Open Sinus Lift: Technical Notes and Case Series. 7

  133. Fang C-H, Sun C-K, Lin Y-W et al (2022) Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. Int J Mol Sci 23:558. https://doi.org/10.3390/ijms23010558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ansari M (2019) Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 8:223–237. https://doi.org/10.1007/s40204-019-00125-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Farokhi M, Shariatzadeh FJ, Solouk A, Mirzadeh H (2020) Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. Int J Polym Mater Polym Biomater 69:230–247. https://doi.org/10.1080/00914037.2018.1562924

    Article  CAS  Google Scholar 

  136. Kaczmarek-Pawelska A (2019) Alginate-Based Hydrogels in Regenerative Medicine. Alginates - Recent Uses This Nat Polym. https://doi.org/10.5772/intechopen.88258

    Article  Google Scholar 

  137. Saltz A, Kandalam U (2016) Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J Biomed Mater Res A 104:1276–1284. https://doi.org/10.1002/jbm.a.35647

    Article  CAS  PubMed  Google Scholar 

  138. Moshaverinia A, Chen C, Akiyama K et al (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23:3041–3051. https://doi.org/10.1007/s10856-012-4759-3

    Article  CAS  PubMed  Google Scholar 

  139. Chircov C, Grumezescu AM, Bejenaru LE Hyaluronic acid-based scaffolds for tissue engineering. 7

  140. Hernandez FCR Use of Hyaluronic Acid in Osteointegration of Dental Implants. 2

  141. Yazan M, Kocyigit ID, Atil F et al (2019) Effect of hyaluronic acid on the osseointegration of dental implants. Br J Oral Maxillofac Surg 57:53–57. https://doi.org/10.1016/j.bjoms.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  142. Al-Khateeb R, Olszewska-Czyz I (2020) Biological molecules in dental applications: hyaluronic acid as a companion biomaterial for diverse dental applications. Heliyon 6:e03722. https://doi.org/10.1016/j.heliyon.2020.e03722

    Article  PubMed  PubMed Central  Google Scholar 

  143. Özan F, Şençimen M, Gülses A, Ayna M (2016) Guided Bone Regeneration Technique Using Hyaluronic Acid in Oral Implantology. Intech Open

  144. Jiang L, Zhang J (2013) 6 - Biodegradable Polymers and Polymer Blends. In: Ebnesajjad S (ed) Handbook of Biopolymers and Biodegradable Plastics. William Andrew Publishing, Boston, pp 109–128

    Chapter  Google Scholar 

  145. Pişkin E, Işoğlu IA, Bölgen N et al (2009) In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. J Biomed Mater Res A 90:1137–1151. https://doi.org/10.1002/jbm.a.32157

    Article  CAS  PubMed  Google Scholar 

  146. Abumanhal M, Ben-Cnaan R, Feldman I et al (2019) Polyester Urethane Implants for Orbital Trapdoor Fracture Repair in Children. J Oral Maxillofac Surg 77:126–131. https://doi.org/10.1016/j.joms.2018.08.005

    Article  PubMed  Google Scholar 

  147. Chiono V, Mozetic P, Boffito M et al (2014) Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus 4:20130045. https://doi.org/10.1098/rsfs.2013.0045

    Article  PubMed  PubMed Central  Google Scholar 

  148. Alves P, Ferreira P, Gil MH Biomedical polyurethanes-based materials. 26

  149. Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K et al (2020) 3D Printed Polyurethane Scaffolds for the Repair of Bone Defects. Front Bioeng Biotechnol 8:557215. https://doi.org/10.3389/fbioe.2020.557215

    Article  PubMed  PubMed Central  Google Scholar 

  150. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A (2018) Healing potentials of polymethylmethacrylate bone cement combined with platelet gel in the critical-sized radial bone defect of rats. PLoS One 13:e0194751. https://doi.org/10.1371/journal.pone.0194751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vojdani M, Giti R (2015) Polyamide as a Denture Base Material: A Literature Review. 9

  152. Russo T, De Santis R, Gloria A et al (2019) Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles. Polymers 12:37. https://doi.org/10.3390/polym12010037

    Article  CAS  PubMed Central  Google Scholar 

  153. Ridwan-Pramana A, Marcián P, Borák L et al (2017) Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach. PLoS One 12:e0179325. https://doi.org/10.1371/journal.pone.0179325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Unterhofer C, Wipplinger C, Verius M et al (2017) Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling. Neurol Neurochir Pol 51:214–220. https://doi.org/10.1016/j.pjnns.2017.02.007

    Article  PubMed  Google Scholar 

  155. Virlan MJR, Miricescu D, Totan A et al (2015) Current Uses of Poly(lactic-co-glycolic acid) in the Dental Field: A Comprehensive Review. J Chem 2015:1–12. https://doi.org/10.1155/2015/525832

    Article  CAS  Google Scholar 

  156. Yoshimoto I, Sasaki J-I, Tsuboi R et al (2018) Development of layered PLGA membranes for periodontal tissue regeneration. Dent Mater 34:538–550. https://doi.org/10.1016/j.dental.2017.12.011

    Article  CAS  PubMed  Google Scholar 

  157. Chor A, Gonçalves RP, Costa AM et al (2020) In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration. Polymers 12:1853. https://doi.org/10.3390/polym12081853

    Article  CAS  PubMed Central  Google Scholar 

  158. Peng C, Zheng J, Chen D et al (2018) Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro. Mol Med Rep 18:1335–1344. https://doi.org/10.3892/mmr.2018.9076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ren T, Ren J, Jia X, Pan K (2005) The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A 74:562–569. https://doi.org/10.1002/jbm.a.30324

    Article  CAS  PubMed  Google Scholar 

  160. Liu S, Qin S, He M et al (2020) Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos Part B Eng 199:108238. https://doi.org/10.1016/j.compositesb.2020.108238

    Article  CAS  Google Scholar 

  161. Mohandesnezhad S, Alizadeh E, Pilehvar-Soltanahmadi Y et al (2020) In vitro evaluation of novel Zeolite-hydroxyapatite blended scaffold for dental tissue engineering. In Review

  162. Helal MH, Hendawy HD, Gaber RA et al (2019) Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects. J Prosthet Dent 121:118–123. https://doi.org/10.1016/j.prosdent.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  163. Kumar P, Dehiya BS, Sindhu A (2018) Bioceramics for Hard Tissue Engineering Applications: A Review 13:9

    Google Scholar 

  164. Zanotti B, Zingaretti N, Almesberger D et al (2014) Enhancing dermal and bone regeneration in calvarial defect surgery. Indian J Plast Surg Off Publ Assoc Plast Surg India 47:325–332. https://doi.org/10.4103/0970-0358.146581

    Article  Google Scholar 

  165. Sukegawa S, Kawai H, Nakano K et al (2019) Feasible Advantage of Bioactive/Bioresorbable Devices Made of Forged Composites of Hydroxyapatite Particles and Poly-L-lactide in Alveolar Bone Augmentation: A Preliminary Study. Int J Med Sci 16:311–317. https://doi.org/10.7150/ijms.27986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Al-Timimi Z, Tammemi ZJ Nanoparticles of Alumina (Al2O3): An Overview and Their Applications in Medical Surgery. 6

  167. Mohanty S, Srivas PK, Rameshbabu AP et al (2019) Reverse Engineering Approach for Customized Dental and Maxillofacial Implants of Alumina Fibre Reinforced Composite. Mater Today Proc 11:753–760. https://doi.org/10.1016/j.matpr.2019.03.038

    Article  CAS  Google Scholar 

  168. Zhang P, Yang K, Zhou Z et al (2020) Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.610284

    Article  PubMed  PubMed Central  Google Scholar 

  169. Vallittu PK (2017) Bioactive glass-containing cranial implants: an overview. J Mater Sci 52:8772–8784. https://doi.org/10.1007/s10853-017-0888-x

    Article  CAS  Google Scholar 

  170. Xie C, Lu H, Li W et al (2012) The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci Mater Med 23:853–862. https://doi.org/10.1007/s10856-011-4535-9

    Article  CAS  PubMed  Google Scholar 

  171. Silva JVL, Gouvêia MF, Santa Barbara A et al (2003) Rapid Prototyping Applications in the Treatment of Craniomaxillofacial Deformities - Utilization of Bioceramics. Key Eng Mater 254–256:687–690. https://doi.org/10.4028/www.scientific.net/KEM.254-256.687

    Article  Google Scholar 

  172. Engstrand T, Kihlström L, Lundgren K et al (2015) Bioceramic Implant Induces Bone Healing of Cranial Defects. Plast Reconstr Surg Glob Open 3:e491. https://doi.org/10.1097/GOX.0000000000000467

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kiradzhiyska DD, Mantcheva RD (2019) Overview of Biocompatible Materials and Their Use in Medicine. Folia Med (Plovdiv) 61:34–40. https://doi.org/10.2478/folmed-2018-0038

    Article  Google Scholar 

  174. Cassetta M, Pranno N, Stasolla A et al (2017) The effects of a common stainless steel orthodontic bracket on the diagnostic quality of cranial and cervical 3T- MR images: a prospective, case-control study. Dentomaxillofacial Radiol 46:20170051. https://doi.org/10.1259/dmfr.20170051

    Article  Google Scholar 

  175. Pacifici L (2016) Metals used in maxillofacial surgery. Oral Implantol 9:107. https://doi.org/10.11138/orl/2016.9.1S.107

  176. Dubey N, Ferreira JA, Malda J et al (2020) Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. ACS Appl Mater Interfaces 12:23752–23763. https://doi.org/10.1021/acsami.0c05311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Elsalanty ME, Por Y-C, Genecov DG et al (2008) Recombinant Human BMP-2 Enhances the Effects of Materials Used for Reconstruction of Large Cranial Defects. J Oral Maxillofac Surg 66:277–285. https://doi.org/10.1016/j.joms.2007.06.626

    Article  PubMed  Google Scholar 

  178. Vaicelyte A, Janssen C, Le Borgne M, Grosgogeat B (2020) Cobalt-Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Curr Comput-Aided Drug Des 10:1151. https://doi.org/10.3390/cryst10121151

    Article  CAS  Google Scholar 

  179. Riviș M, Roi C, Roi A et al (2020) The Implications of Titanium Alloys Applied in Maxillofacial Osteosynthesis. Appl Sci 10:3203. https://doi.org/10.3390/app10093203

    Article  CAS  Google Scholar 

  180. Özcan M, Hämmerle C (2012) Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials 5:1528–1545. https://doi.org/10.3390/ma5091528

    Article  CAS  PubMed Central  Google Scholar 

  181. Kim BJ, Piao Y, Wufuer M et al (2018) Biocompatibility and Efficiency of Biodegradable Magnesium-Based Plates and Screws in the Facial Fracture Model of Beagles. J Oral Maxillofac Surg 76:1055.e1-1055.e9. https://doi.org/10.1016/j.joms.2018.01.015

    Article  Google Scholar 

  182. WetterlövCharyeva O (2017) Magnesium Screws and Plates for Bone Augmentation: a New Concept in Dental Surgery. 3

  183. Xiao X, Liu E, Shao J, Ge S (2021) Advances on biodegradable zinc-silver-based alloys for biomedical applications. J Appl Biomater Funct Mater 19:22808000211062410. https://doi.org/10.1177/22808000211062407

    Article  CAS  Google Scholar 

  184. Zeng N (2017) Application of poly(trimethylene carbonate) and calcium phosphate composite biomaterials in oral and maxillofacial surgery. Thesis fully internal (DIV), Rijksuniversiteit Groningen

  185. Gahlert M, Roehling S, Sprecher CM et al (2012) In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae: In vivo performance of zirconia and titanium implants. Clin Oral Implants Res 23:281–286. https://doi.org/10.1111/j.1600-0501.2011.02157.x

    Article  CAS  PubMed  Google Scholar 

  186. Li B, Wang H, Qiu G et al (2016) Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2016/2869572/. Accessed 1 Oct 2020

  187. Jia J, Siheng W, Fang C et al (2016) The study on vascularisation and osteogenesis of BMP/VEGF co-modified tissue engineering bone in vivo. RSC Adv 6:41800–41808. https://doi.org/10.1039/C6RA03111K

    Article  CAS  Google Scholar 

  188. Dou DD, Zhou G, Liu HW et al (2019) Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. Int J Biol Macromol 123:622–628. https://doi.org/10.1016/j.ijbiomac.2018.11.099

    Article  CAS  PubMed  Google Scholar 

  189. Thoma DS, Payer M, Jakse N et al (2018) Randomized, controlled clinical two-centre study using xenogeneic block grafts loaded with recombinant human bone morphogenetic protein-2 or autogenous bone blocks for lateral ridge augmentation. J Clin Periodontol 45:265–276. https://doi.org/10.1111/jcpe.12841

    Article  CAS  PubMed  Google Scholar 

  190. Keogh MB, O’ Brien FJ, Daly JS (2010) A novel collagen scaffold supports human osteogenesis—applications for bone tissue engineering. Cell Tissue Res 340:169–177. https://doi.org/10.1007/s00441-010-0939-y

    Article  CAS  PubMed  Google Scholar 

  191. Braddock M, Houston P, Campbell C, Ashcroft P (2001) Born Again Bone: Tissue Engineering for Bone Repair. Physiology 16:208–213. https://doi.org/10.1152/physiologyonline.2001.16.5.208

    Article  CAS  Google Scholar 

  192. Feito MJ, Lozano RM, Alcaide M et al (2011) Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. J Mater Sci Mater Med 22:405–416. https://doi.org/10.1007/s10856-010-4193-3

    Article  CAS  PubMed  Google Scholar 

  193. Bosetti M, Boccafoschi F, Leigheb M, Cannas MF (2007) Effect of different growth factors on human osteoblasts activities: A possible application in bone regeneration for tissue engineering. Biomol Eng 24:613–618. https://doi.org/10.1016/j.bioeng.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  194. Murahashi Y, Yano F, Nakamoto H et al (2019) Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater 85:172–179. https://doi.org/10.1016/j.actbio.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  195. Wang L, Singh M, Bonewald LF, Detamore MS (2009) Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. J Tissue Eng Regen Med 3:398–404. https://doi.org/10.1002/term.176

    Article  CAS  PubMed  Google Scholar 

  196. Lee J, Lee S, Ahmad T et al (2020) Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering. Biomaterials 255:120192. https://doi.org/10.1016/j.biomaterials.2020.120192

    Article  CAS  PubMed  Google Scholar 

  197. Wöltje M, Brünler R, Böbel M et al (2020) Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration. Coatings 10:8. https://doi.org/10.3390/coatings10010008

    Article  CAS  Google Scholar 

  198. Giannobile WV, Lee CS, Tomala MP et al (2001) Platelet-Derived Growth Factor (PDGF) Gene Delivery for Application in Periodontal Tissue Engineering. J Periodontol 72:815–823. https://doi.org/10.1902/jop.2001.72.6.815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nguyen LH, Annabi N, Nikkhah M et al (2012) Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Eng Part B Rev 18:363–382. https://doi.org/10.1089/ten.teb.2012.0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Feng L, Wu HEL et al (2013) Effects of Vascular Endothelial Growth Factor 165 on Bone Tissue Engineering. PLoS One 8.https://doi.org/10.1371/journal.pone.0082945

  201. Jabbarzadeh E, Deng M, Lv Q et al (2012) VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 100B:2187–2196. https://doi.org/10.1002/jbm.b.32787

    Article  CAS  Google Scholar 

  202. Nie L, Chang P, Sun M et al (2018) Composite Hydrogels with the Simultaneous Release of VEGF and MCP-1 for Enhancing Angiogenesis for Bone Tissue Engineering Applications. Appl Sci 8:2438. https://doi.org/10.3390/app8122438

    Article  CAS  Google Scholar 

  203. Fan X, Gao N, Li J et al (2018) Effects of VEGF levels on anti-VEGF therapy for patients with idiopathic choroidal neovascularization. Mol Cell Biochem 441:173–179. https://doi.org/10.1007/s11010-017-3183-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Human Resource Development (MHRD), Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Mahto.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundu, S., Varshney, N., Sahi, A.K. et al. Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. J Polym Res 29, 73 (2022). https://doi.org/10.1007/s10965-022-02928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02928-4

Keywords

Navigation