Skip to main content

Advertisement

Log in

Magnesium hydroxide/graphene oxide chip in flakes structure and its fire-retardant reinforcement of polypropylene

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the contribution, magnesium hydroxides and graphene oxide were synergistically combined to prepare the chip-in-flakes nanohybrid (Mg(OH)2/GO, MGO) via one-step hydrothermal approach for improving fire retardancy of polypropylene. Various characterizations confirmed its composition, structure and morphology. The fire-retardant evaluations illustrated that limiting oxygen index (LOI) of PP composite with 50 wt.% MGO was improved to 27.8% with UL-94 V-0 rating compared with virgin PP (17.4%, no rating). In parallel, the peak heat release rate, total heat release and smoke production rate of PP/MGO (PMG) were reduced by 80.5%, 30.8% and 79.4% respectively. The mechanism investigation uncovered that the conspicuous fire retardancy and smoke suppression were credited to the synergistic effect between GO and Mg(OH)2 toward the optimized physical barrier. Furthermore, dynamic mechanical analysis (DMA) disclosed the highest modulus (8043 MPa) at -71 °C relative to 3236 MPa of pure PP. In viewpoint, hierarchical nano-flakes with synergistic effect offered an effective approach for the fire-safe polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang X, Zhao S, Meng X, Xin Z (2020) J Polym Res 27:303. https://doi.org/10.1007/s10965-020-02260-9

    Article  CAS  Google Scholar 

  2. Zhang Q, Zhan J, Zhou K, Lu H, Zeng W, Stec AA et al (2015) Polym Degrad Stab 115:38–44. https://doi.org/10.1016/j.polymdegradstab.2015.02.010

    Article  CAS  Google Scholar 

  3. Wu K, Xu S, Tian XY, Zeng HY, Hu J, Guo YH et al (2021) Int J Biol Macromol 178:580–590. https://doi.org/10.1016/j.ijbiomac.2021.02.148

    Article  CAS  PubMed  Google Scholar 

  4. Nie S, Wu W, Pan Y, Dong X, Li B, Wang D-Y (2018) Fire Mater 42:703–709. https://doi.org/10.1002/fam.2523

    Article  CAS  Google Scholar 

  5. Zubkiewicz A, Szymczyk A, Paszkiewicz S, Jędrzejewski R, Piesowicz E, Siemiński J (2020) J Appl Polym Sci 137:49135. https://doi.org/10.1002/app.49135

    Article  CAS  Google Scholar 

  6. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G (2020) Compos B Eng 184:107675. https://doi.org/10.1016/j.compositesb.2019.107675

    Article  CAS  Google Scholar 

  7. Tan Y, Shao ZB, Chen XF, Long JW, Chen L, Wang YZ (2015) ACS Appl Mater Interfaces 7:17919–17928. https://doi.org/10.1021/acsami.5b04570

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Wang T, Wen Y, Wen X, Gao D, Yu R et al (2019) Compos B Eng 177:107402. https://doi.org/10.1016/j.compositesb.2019.107402

    Article  CAS  Google Scholar 

  9. Yao D, Yin G, Bi Q, Yin X, Wang N, Wang D-Y (2020) Polymers (Basel) 12. https://doi.org/10.3390/polym12092107

  10. Liu T, Wang F, Li G, Liu P, Gao C, Ding Y et al (2020) J Appl Polym Sci 138:49607. https://doi.org/10.1002/app.49607

    Article  CAS  Google Scholar 

  11. Liu Z, Zhang Y, Li N, Wen X, Nogales LA, Li L et al (2018) J Therm Anal Calorim 136:601–608. https://doi.org/10.1007/s10973-018-7669-x

    Article  CAS  Google Scholar 

  12. Fu M, Qu B (2004) Polym Degrad Stab 85:633–639. https://doi.org/10.1016/j.polymdegradstab.2004.03.002

    Article  CAS  Google Scholar 

  13. Liu J, He Y, Chang H, Guo Y, Li H, Pan B (2020) Polym Degrad Stab 171:109051. https://doi.org/10.1016/j.polymdegradstab.2019.109051

    Article  CAS  Google Scholar 

  14. Yen Y-Y, Wang H-T, Guo W-J (2012) Polym Degrad Stab 97:863–869. https://doi.org/10.1016/j.polymdegradstab.2012.03.043

    Article  CAS  Google Scholar 

  15. Zhang G, Ding P, Zhang M, Qu B (2007) Polym Degrad Stab 92:1715–1720. https://doi.org/10.1016/j.polymdegradstab.2007.06.004

    Article  CAS  Google Scholar 

  16. Song L, Zhou S, Wu J, Hu Y (2009) Polym-Plast Technol Eng 48:1088–1093. https://doi.org/10.1080/03602550903147205

    Article  CAS  Google Scholar 

  17. Carpentier F, Bourbigot S, Bras ML, Delobel R, Foulon M (2000) Polym Degrad Stab 69:83–92. https://doi.org/10.1016/S0141-3910(00)00044-6

    Article  CAS  Google Scholar 

  18. Li Z, Liu Z, Zhang J, Fu C, Wagenknecht U, Wang D-Y (2019) Chem Eng J 378:122046. https://doi.org/10.1016/j.cej.2019.122046

    Article  CAS  Google Scholar 

  19. Cai W, Cai T, He L, Chu F, Mu X, Han L et al (2020) J Hazard Mater 387:121971. https://doi.org/10.1016/j.jhazmat.2019.121971

    Article  CAS  PubMed  Google Scholar 

  20. Qu L, Sui Y, Zhang C, Li P, Dai X, Xu B et al (2020) Eur Polymer J 122:109383. https://doi.org/10.1016/j.eurpolymj.2019.109383

    Article  CAS  Google Scholar 

  21. Yu B, Tawiah B, Wang LQ, Yuen A, Zhang ZC, Shen LL et al (2019) J Hazard Mater 374:110–119. https://doi.org/10.1016/j.jhazmat.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  23. Shi X, Peng X, Zhu J, Lin G, Kuang T (2018) J Colloid Interface Sci 524:267–278. https://doi.org/10.1016/j.jcis.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Liu J, Li K (2015) Journal of Vinyl & Additive. Technology 21:278–284. https://doi.org/10.1002/vnl.21415

    Article  CAS  Google Scholar 

  25. Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z (2012) Mater Chem Phys 132:520–528. https://doi.org/10.1016/j.matchemphys.2011.11.064

    Article  CAS  Google Scholar 

  26. Liu ZQ, Li Z, Yang YX, Zhang YL, Wen X, Li N, et al (2018) Polymers (Basel). https://doi.org/10.3390/polym10091028

  27. Chen J, Yao B, Li C, Shi G (2013) Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  28. Hummers SW, Offeman RE (1958) J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

  29. Maddalena L, Carosio F, Gomez J, Saracco G, Fina A (2018) Polym Degrad Stab 152:1–9. https://doi.org/10.1016/j.polymdegradstab.2018.03.013

    Article  CAS  Google Scholar 

  30. Si Y, Samulski ET (2008) Nano Lett 8:1679–1682. https://doi.org/10.1021/nl080604h

    Article  CAS  PubMed  Google Scholar 

  31. Wensel R, Penaloza M, Cross WM, Winter RM, Kellar JJ (1995) Langmuir 11:4593–4595. https://doi.org/10.1021/la00011a066

    Article  CAS  Google Scholar 

  32. Pang H, Ning G, Gong W, Ye J, Lin Y (2011) Chem Commun (Camb) 47:6317–6319. https://doi.org/10.1039/c1cc10279f

    Article  CAS  Google Scholar 

  33. Gong W, Wu D, Cheng Z, Pang H, Lin Y, Ning G (2013) Mater Res Bull 48:1333–1337. https://doi.org/10.1016/j.materresbull.2012.12.033

    Article  CAS  Google Scholar 

  34. Bhargava R, Khan S (2017) Adv Powder Technol 28:2812–2819. https://doi.org/10.1016/j.apt.2017.08.008

    Article  CAS  Google Scholar 

  35. Bradder P, Ling SK, Wang S, Liu S (2011) J Chem Eng Data 56:138–141. https://doi.org/10.1021/je101049g

    Article  CAS  Google Scholar 

  36. Amrollahi S, Ramezanzadeh B, Yari H, Ramezanzadeh M, Mahdavian M (2019) Compos B Eng 173:106804. https://doi.org/10.1016/j.compositesb.2019.05.015

    Article  CAS  Google Scholar 

  37. Kandola BK, Yenilmez A, Horrocks RA, Smart G, Kun W, Hu Y (2009) ACS Symp Ser 1013:47–69. https://doi.org/10.1021/bk-2009-1013.ch005

    Article  CAS  Google Scholar 

  38. Wang B, Zhou K, Wang B, Gui Z, Hu Y (2014) Ind Eng Chem Res 53:12355–12362. https://doi.org/10.1021/ie502232a

    Article  CAS  Google Scholar 

  39. Yuan B, Hu Y, Chen X, Shi Y, Niu Y, Zhang Y et al (2017) Compos A Appl Sci Manuf 100:106–117. https://doi.org/10.1016/j.compositesa.2017.04.012

    Article  CAS  Google Scholar 

  40. Sun Y, Yuan B, Shang S, Zhang H, Shi Y, Yu B et al (2020) Compos B Eng 181:107588. https://doi.org/10.1016/j.compositesb.2019.107588

    Article  CAS  Google Scholar 

  41. Wang R, Zhuo D, Weng Z, Wu L, Cheng X, Zhou Y et al (2015) J Mat Chem A 3:9826–9836. https://doi.org/10.1039/C5TA00722D

    Article  CAS  Google Scholar 

  42. Weidenfeller B, Kirchberg S (2016) Compos B Eng 92:133–141. https://doi.org/10.1016/j.compositesb.2016.02.011

    Article  CAS  Google Scholar 

  43. Hasegawa N, Okamoto H, Kato M, Usuki A (2000) J Appl Polym Sci 78:1918–1922. https://doi.org/10.1016/j.joen.2008.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded the Natural Science Foundation of China (No. U1607104), the Science and Technology of Qinghai Program (2019-HZ-813, 2019-GX-163, 2020-GX-102 and 2020-GX-ZL07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A chip-in-flakes structure nanohybrid Mg(OH)2-GO was synthesized via one-step hydrothermal method.

• 50 wt.% Mg(OH)2-GO endowed polypropylene with UL-94 V-0, reduced the release of toxic gases and improved the fire safety of PP.

• Mg(OH)2-GO remarkably improved the mechanical properties of PP matrix.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2673 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhang, Y., Jia, Y. et al. Magnesium hydroxide/graphene oxide chip in flakes structure and its fire-retardant reinforcement of polypropylene. J Polym Res 28, 393 (2021). https://doi.org/10.1007/s10965-021-02764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02764-y

Keywords

Navigation