Skip to main content
Log in

Synthesis and characterization of an innovative molecular imprinted polymers based on CdTe QDs fluorescence sensing for selective detection of sulfadimidine

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An innovative molecular imprinted polymer based on KH-570 modified SiO2-coated cadmium telluride quantum dots was prepared as fluorescence sensor for sulfadimidine (SM2) sensitive and selective detection. The quantum dots were firstly encapsulated in silica by sol–gel process, and then the double bond was modified on the surface of silica with KH-570. Finally, the molecular imprinted layer was synthesized on the surface of silica by template molecule, methacrylic acid (MAA) and ethylene glycol dimethyl acrylate. The fluorescence sensors showed good structure when characterized by SEM. Besides, the fluorescence sensors showed a good linear range from 10 to 80 μmol.L−1 with a lower LOD of 0.42 μmol.L−1. These sensors were successfully applied to detect SM2 in the water samples with a recovery rate from 91.6% to 97.8% and the relative standard deviation less than 2.5%, indicating that fluorescence sensors have the potential application in the detection of real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov VI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W (2015) Prospects of Nanoscience with Nanocrystals. ACS Nano 9:1012–1057

    Article  CAS  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells in vivo imaging and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  3. Gao Z, Luan Y, Cao Y, Li J, Lu Y, Liu T, Wang N, Zhou Z, Huang W, Xu W (2020) An eco-friendly fluorometric polymer nanoparticle for selectively monitoring sulfadiazine in tap water. Methods Appl Fluores 8:025005

  4. Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55:563–627

    Article  CAS  Google Scholar 

  5. Chen J, Xiao A, Zhang Z, Yu Y, Yan Z (2015) The synthesis and modification of CdTe/CdS core shell quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 151:506–509

    Article  CAS  Google Scholar 

  6. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–4085

    Article  CAS  Google Scholar 

  7. Ge L, Liu J (2011) Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6. Appl Catal B 105:289–297

    Article  CAS  Google Scholar 

  8. Xue F, Chen J, Guo J, Wang C, Yang W, Wang P, Lu D (2007) Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by Tat conjugation. J Fluoresc 17:149–154

    Article  CAS  Google Scholar 

  9. Shan Y, Xu J, Chen H (2011) Enhanced electrochemiluminescence quenching of CdS: Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3:2916–2923

    Article  CAS  Google Scholar 

  10. Yang P, Ando M, Murase N (2007) Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency. J Colloid Interface Sci 316:420–427

    Article  CAS  Google Scholar 

  11. Mu Q, Xu H, Li Y, Ma S, Zhong X (2014) Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 139:93–98

    Article  CAS  Google Scholar 

  12. Tan L, Kang C, Xu S, Tang Y (2013) Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens Bioelectron 48:216–223

    Article  CAS  Google Scholar 

  13. Qiu T, Zhao D, Zhou G, Liang Y, He Z, Liu Z, Peng X, Zhou L (2010) A positively charged QDs-based FRET probe for micrococcal nuclease detection. Analyst 135:2394–2399

    Article  CAS  Google Scholar 

  14. Liu H, Wu D, Liu Y, Zhang H, Ma T, Aidaerhan A, Wang J, Sun B (2015) Application of an optosensing chip based on molecularly imprinted polymer coated quantum dots for the highly selective and sensitive determination of sesamol in sesame oils. J Agric Food Chem 63:2545–2549

    Article  CAS  Google Scholar 

  15. Xu S, Lu H, Li J, Song X, Wang A, Chen L, Han S (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 246-Trinitrotoluene. Acs Appl Mater Inter 5:8146–8154

    Article  CAS  Google Scholar 

  16. Zhou X, Wang A, Yu C, Wu S, Shen J (2015) Facile synthesis of molecularly imprinted graphene quantum dots for the determination of dopamine with affinity-adjustable. Acs Appl Mater Inter 7:11741–11747

    Article  CAS  Google Scholar 

  17. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2003) Molecular imprinting science and technology: a survey of the literature for the years up to and including. J Mol Recognit 19:106–180

    Article  Google Scholar 

  18. Poma A, Turner AP, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28:629–637

    Article  CAS  Google Scholar 

  19. Wang X, Yu J, Kang Q, Shen D, Li J, Chen L (2016) Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin. Biosens Bioelectron 77:624–630

    Article  CAS  Google Scholar 

  20. Liu H, Zhou K, Wu D, Wang J, Sun B (2016) A novel quantum dots-labeled on the surface of molecularly imprinted polymer for turn-off optosensing of dicyandiamide in dairy products. Biosens Bioelectron 77:512–517

    Article  CAS  Google Scholar 

  21. Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945

    Article  CAS  Google Scholar 

  22. Mohsen R, Jamaleddin SS, Reza GM, Reza KA, Abbas RF, Farideh G (2008) Synthesis of molecularly imprinted polymer as a solid phase sorbent for pesticide dursban. Int J Occup Hyg 2:57–62

    Google Scholar 

  23. Gao Y, Tan N, Wang J, He D, Ji K, Han J, Yan X (2018) Selective recognition and preliminary separation of hepatoprotective component silybin from milk thistle seeds by the prepared core–shell magnetic molecularly imprinted polymer. J Polym Res 25(7):150

    Article  Google Scholar 

  24. Spielmeyer A, Ahlborn J, Hamscher G (2014) Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 406:2513–2524

    Article  CAS  Google Scholar 

  25. Teixido M, Hurtado C, Pignatello JJ, Beltran JL, Granados M, Peccia J (2013) Predicting contaminant adsorption in black carbon (biochar)-amended soil for the veterinary antimicrobial sulfamethazine. Environ Sci Technol 47:6197–6205

    Article  CAS  Google Scholar 

  26. Baran W, Adamek E, Ziemianska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15

    Article  CAS  Google Scholar 

  27. Elbadawy M, Ishihara Y, Aboubakr M, Sasaki K, Shimoda M (2016) Oral absorption profiles of sulfonamides in Shiba goats: a comparison among sulfadimidine sulfadiazine and sulfanilamide. J Vet Med Sci 78:1025–1029

    Article  CAS  Google Scholar 

  28. Jiao Z, Zhu D, Yao W (2015) Combination of accelerated solvent extraction and Micro-Solid-Phase extraction for determination of trace antibiotics in food samples. Food Anal Method 8:2163–2168

    Article  Google Scholar 

  29. Chen C, Zhang X, Long Z, Zhang J, Zheng C (2012) Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Microchim Acta 178:293–299

    Article  CAS  Google Scholar 

  30. Zhou Z, Ying H, Liu Y, Xu W, Yang Y, Luan Y, Lu Y, Liu T, Yu S, Yang W (2017) Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine. Appl Surf Sci 404:188–196

    Article  CAS  Google Scholar 

  31. Shi T, Tan L, Fu H, Wang J (2019) Application of molecular imprinting polymer anchored on CdTe quantum dots for the detection of sulfadiazine in seawater. Mar Pollut Bull 146:591–597

    Article  CAS  Google Scholar 

  32. Ni Y, Wang S, Kokot S (2010) Spectrometric study of the interaction between alpinetin and bovine serum albumin using chemometrics approaches. Anal Chim Acta 663(2):139–146

    Article  CAS  Google Scholar 

  33. Tian J, Bai J, Peng Y, Qie Z, Zhao Y, Ning B, Xiao D, Gao Z (2015) A core-shell-structured molecularly imprinted polymer on upconverting nanoparticles for selective and sensitive fluorescence sensing of sulfamethazine. Analyst 140(15):5301–5307

    Article  CAS  Google Scholar 

  34. Chen L, Xu Y, Sun L, Zheng J, Dai J, Li C, Yan Y (2018) Convenient determination of sulfamethazine in milk by novel ratiometric fluorescence with carbon and quantum dots with on-site naked-eye detection and low interferences. Anal Lett 51(13):2099–2113

    Article  CAS  Google Scholar 

  35. Zheng J, Cheng K, Wu Y, Yu P (2020) Environment-friendly ZnO-based molecularly imprinting polymers fluorescence sensor for direct detection of sulfadimidine. J Mater Sci Mater Electron 31(12):9550–9558

    Article  CAS  Google Scholar 

  36. Ren K, Wu S, Guo X, Wang H (2019) Lanthanide organic framework as a reversible luminescent sensor for sulfamethazine antibiotics. Inorg Chem 58(7):4223–4229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (32072297), Science and Technology Planning Social Development Project of Jiangsu Province (No. BE2018694), Science and Technology Planning Social Development Project of Zhenjiang City (No. SH2019013), the Fifth phase “169 Project” training fund of Zhenjiang, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Thanks are due to Dr. Xu Xiaolu who has contributed to this paper in some manner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihong Huang or Xiaoni Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Fang, Q., Zhang, L. et al. Synthesis and characterization of an innovative molecular imprinted polymers based on CdTe QDs fluorescence sensing for selective detection of sulfadimidine. J Polym Res 28, 356 (2021). https://doi.org/10.1007/s10965-021-02714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02714-8

Keywords

Navigation