Skip to main content

Advertisement

Log in

Assessing the pH responsive and mucoadhesive behavior of dexamethasone sodium phosphate loaded itaconic acid-grafted-poly(acrylamide)/carbopol semi-interpenetrating networks

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, we developed, dual responsive itaconic acid-grafted-poly(acrylamide)/carbopol (IA-g-poly(AAm)/CP) semi interpenetrating network (semi-IPN) by free radical polymerization in the presence of N, N-methylene-bis-acrylamide (MBA) and ammonium per sulphate (APS) as crosslinker and initiator, respectively. The synthesized crosslinked hydrogels were initially studied for effect of various formulation ingredients and their concentrations on swelling and mucoadhesive. C1 was chosen as optimum formulation that showed adequate mucoadhesive strength and furthermore revealed minimum swelling at pH 1.2 and maximum at pH 7.4. FTIR indicated at development of semi-IPN network with successful grafting of IA. Surface of hydrogel was rough with few drug particles on surface. C1 released minute quantity of dexamethasone sodium phosphate (DSP) at pH 1.2, while maximum of drug was released at pH 7.4 by non Fickian diffusion. Toxicological and hemocompatibility tests confirmed bio-safety and hemocompatibility of prepared semi-IPN hydrogels. So, in future prepared semi-IPN hydrogels can be safely employed for targeted and controlled delivery of DSP for possible therapy of inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mogoşanu GD, Grumezescu AM, Bejenaru LE, Bejenaru C (2016) Natural and synthetic polymers for drug delivery and targeting. Nanobiomater Drug Deliv Elsevier 229–284

  2. Wang C, Zhang Y, Li J, Yang Z, Wang Q, Wang T, Li S, Chen S, Zhang X (2020) Shape memory properties of interpenetrating polymer networks (IPNs) based on hyperbranched polyurethane (HBPU). Eur Polym J 123:109393

  3. Shahruzzaman M, Islam MM, Islam MS, Sakib MN, Mallik AK, Haque P, Rahman MM (2020) Semi-IPN Systems for Drug Delivery. In: Interpenetrating Polymer Network: Biomedical Applications. Springer, pp 205–236

  4. Liao J, Huang H (2020) Temperature/pH dual sensitive Hericium erinaceus residue carboxymethyl chitin/poly (N-isopropyl acrylamide) sequential IPN hydrogels. Cellulose 27(2):825–838

    Article  CAS  Google Scholar 

  5. Tuan HNA, Nhu VTT (2020) Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N. N’-Diethylacrylamide and Itaconamic Acid. Polymers 12(5):1139

    CAS  Google Scholar 

  6. Mousazadeh S, Kokabi M (2020) Transient swelling behaviour of dual stimuli sensitive nanocomposite hydrogels. Polymer 191:122280

  7. Verestiuc L, Ivanov C, Barbu E, Tsibouklis J (2004) Dual-stimuli-responsive hydrogels based on poly (N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm 269(1):185–194

    Article  CAS  PubMed  Google Scholar 

  8. Kumar Singh Yadav H, Shivakumar H (2012) In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. Isrn Pharm 2012:1–9

    Article  CAS  Google Scholar 

  9. Sakthivel M, Franklin D, Guhanathan S (2016) pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications. Ecotoxicol Environ Safe 134:427–432

    Article  CAS  PubMed  Google Scholar 

  10. Krezović BD, Miljković MG, Stojanović ST, Najman SJ, Filipović JM, Tomić SL (2017) Structural, thermal, mechanical, swelling, drug release, antibacterial and cytotoxic properties of P (HEA/IA)/PVP semi-IPN hydrogels. Chem Eng Res Des 121:368–380

    Article  CAS  Google Scholar 

  11. Krezović BD, Dimitrijević SI, Filipović JM, Nikolić RR, Tomić SL (2013) Antimicrobial P (HEMA/IA)/PVP semi-interpenetrating network hydrogels. Polym Bull 70(3):809–819

    Article  CAS  Google Scholar 

  12. Qavi S, Pourmahdian S, Eslami H (2014) Acrylamide hydrogels preparation via free radical crosslinking copolymerization: Kinetic study and morphological investigation. J Macromol Sci Part A 51(10):842–848

    Article  CAS  Google Scholar 

  13. El-Hamshary H (2007) Synthesis and water sorption studies of pH sensitive poly (acrylamide-co-itaconic acid) hydrogels. Eur Polym J 43(11):4830–4838

    Article  CAS  Google Scholar 

  14. Bal A, Çepni F, Çakir Ö, Acar I, Güçlü G (2015) Synthesis and characterization of copolymeric and terpolymeric hydrogel-silver nanocomposites based on acrylic acid, acrylamide and itaconic acid: investigation of their antibacterial activity against gram-negative bacteria. Braz J Chem Eng 32(2):509–518

    Article  Google Scholar 

  15. Stanojević M, Krušić MK, Filipović J, Parojčić J, Stupar M (2006) An investigation into the influence of hydrogel composition on swelling behavior and drug release from poly (acrylamide-co-itaconic acid) hydrogels in various media. Drug Deliv 13(1):1–7

    Article  PubMed  CAS  Google Scholar 

  16. Ayres E, Ferreira CR, Lima TH, Martins GS, Villanova JC, Oréfice RL (2016) Self-crosslinkable complexes based on poly (ethylene glycol)(PEG), poly (itaconic acid)(PIA) and N-methylol acrylamide (NMA) as pharmaceutical hydrophilic matrices. Polym Bull 73(1):75–95

    Article  CAS  Google Scholar 

  17. Yu Y, Li Y, Liu L, Zhu C, Xu Y (2011) Synthesis and characterization of pH-and thermoresponsive poly (N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan. J Polym Res 18(2):283–291

    Article  CAS  Google Scholar 

  18. Ali A, Khalid I, Minhas MU, Barkat K, Khan IU, Syed HK, Umar A (2019) Preparation and in vitro evaluation of Chondroitin sulfate and carbopol based mucoadhesive controlled release polymeric composites of Loxoprofen using factorial design. Eur Polym J 121:109312

  19. Singla AK, Chawla M, Singh A (2000) Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm 26(9):913–924

    Article  CAS  PubMed  Google Scholar 

  20. Tang C, Yin C, Pei Y, Zhang M, Wu L (2005) New superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur Polym J 41(3):557–562

    Article  CAS  Google Scholar 

  21. Rajput G, Majmudar F, Patel J, Patel K, Thakor R, Patel B, Rajgor N (2010) Stomach specific mucoadhesive tablets as controlled drug delivery system–A review work. Int J Pharm Biol Res 1:30–41

    Google Scholar 

  22. Shabir F, Erum A, Tulain UR, Hussain MA, Ahmad M, Akhter F (2017) Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Des Monomers Polym 20(1):485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naeem F, Khan S, Jalil A, Ranjha NM, Riaz A, Haider MS, Sarwar S, Saher F, Afzal S (2017) pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties. Bioimpacts 7(3):177–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boztepe C, Künkül A, Yüceer M (2020) Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly (NIPAAm-co-AAc)-PEG IPN hydrogel. J Drug Deliv Sci Technol 57:101603

  25. Amiryaghoubi N, Pesyan NN, Fathi M, Omidi Y (2020) Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int J Biol Macromol 162:1338–1357

    Article  CAS  PubMed  Google Scholar 

  26. Dos Santos K, Coelho J, Ferreira P, Pinto I, Lorenzetti SG, Ferreira E, Higa OZ, Gil M (2006) Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. International J Pharm 310(1–2):37–45

    Article  PubMed  CAS  Google Scholar 

  27. Aderibigbe B, Ndwabu S (2017) Evaluation of whey protein isolate-graft-carbopol-polyacrylamide pH-sensitive composites for controlled release of pamidronate. Polym Bull 74(12):5129–5144

    Article  CAS  Google Scholar 

  28. Dobić SN, Jovašević JS, Vojisavljević MD, Tomić SL (2011) Hemocompatibility and swelling studies of poly (2-hydroxyethyl methacrylate-co-itaconic acid-co-poly (ethylene glycol) dimethacrylate) hydrogels. Hem Ind 65(6):675–685

    Article  Google Scholar 

  29. Babić MM, Tomić SL (2020) Semi-interpenetrating Networks Based on (Meth)acrylate, Itaconic Acid, and Poly(vinyl Pyrrolidone) Hydrogels for Biomedical Applications. In: Jana S, Jana S (eds). Interpenetrating Polymer Network: Biomedical Applications. Springer Singapore, Singapore 263–288. https://doi.org/10.1007/978-981-15-0283-5_10

  30. Sakthivel M, Franklin D, Sudarsan S, Chitra G, Guhanathan S (2017) Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels. Mater Sci Eng C 75:517–523

    Article  CAS  Google Scholar 

  31. Rodriguez-Tenreiro C, Diez-Bueno L, Concheiro A, Torres-Labandeira JJ, Alvarez-Lorenzo C (2007) Cyclodextrin/carbopol micro-scale interpenetrating networks (ms-IPNs) for drug delivery. J Control Release 123(1):56–66

    Article  CAS  PubMed  Google Scholar 

  32. Wan T, Xiong J, Zhao Q, Wu D, Tang L, Liao L, Chen Q (2016) Crosslinker effects on swelling and gel properties of pH-and temperature-responsive poly (NIPAM/IA/AM) hydrogels. Polym Bull 73(5):1447–1458

    Article  CAS  Google Scholar 

  33. Chavda H, Patel C (2011) Effect of crosslinker concentration on characteristics of superporous hydrogel. Int J Pharm Investig 1(1):17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang C, Yin L, Yu J, Yin C, Pei Y (2007) Swelling behavior and biocompatibility of Carbopol-containing superporous hydrogel composites. J Appl Polym Sci 104(5):2785–2791

    Article  CAS  Google Scholar 

  35. Panzade P, Puranik PK (2010) Carbopol Polymers: A Versatile Polymer for Pharmaceutical Applications. Res J Pharm Technol 3(3):672–675

    CAS  Google Scholar 

  36. Verma C, Negi P, Pathania D, Sethi V, Gupta B (2019) Preparation of pH-sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polym Int 68(3):344–350

    CAS  Google Scholar 

  37. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal B (2004) Investigation of drug release from thermo-and pH-sensitive poly (N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Polym Adv Technol 15(9):528–532

    Article  CAS  Google Scholar 

  38. Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620

    Article  CAS  PubMed  Google Scholar 

  39. Shivarkar AB, Gaykar DV, Jain RK (2015) Study of performance properties of itaconic acid based acrylic-modified polyester for industrial baking finishes. Prog Org Coat 89:75–81

    Article  CAS  Google Scholar 

  40. Wei L, Wang J, Zhou H, Jin W, Hu Z, Ni J (2013) Directional breeding of high itaconic acid yielding strain of Aspergillus terreus with a new plate technique. Adv Microbiol 3:376–381

    Article  CAS  Google Scholar 

  41. Ullah R, Khan SU-D, Aamir M, Ullah R (2013) Terahertz time domain, Raman and fourier transform infrared spectroscopy of acrylamide, and the application of density functional theory. J Spectrosc 2013:1–7

    Article  CAS  Google Scholar 

  42. Gupta NV, Shivakumar H (2012) Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran J Pharm Res 11(2):481–493

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei Q-B, Fu F, Zhang Y-Q, Wang Q, Ren Y-X (2014) pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release. J Polym Res 21(6):453

    Article  CAS  Google Scholar 

  44. Garala K, Joshi P, Shah M, Ramkishan A, Patel J (2013) Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig 3(1):29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abu-Huwaij R, Obaidat RM, Sweidan K, Al-Hiari Y (2011) Formulation and in vitro evaluation of xanthan gum or carbopol 934-based mucoadhesive patches, loaded with nicotine. AAPS Pharm Sci Tech 12(1):21–27

    Article  CAS  PubMed  Google Scholar 

  46. Sohail K, Khan IU, Shahzad Y, Hussain T, Ranjha NM (2014) pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Impact of material parameters on swelling and drug release. Braz J Pharm Sci 50(1):173–184

    Article  Google Scholar 

  47. Ray D, Sahoo PK, Mohanta GP (2014) Designing of superporous cross-linked hydrogels containing acrylic-based polymer network. Asian J Pharm 2(2):123–127

    Article  Google Scholar 

  48. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polyme 66(2):229–245

    Article  CAS  Google Scholar 

  49. Kayaman N, Hamurcu EEG, Uyanik N, Baysal BM (1999) Interpenetrating hydrogel networks based on polyacrylamide and poly (itaconic acid): synthesis and characterization. Macromol Chem Phys 200(1):231–238

    Article  CAS  Google Scholar 

  50. Zhang Z, Yu J, Zhou Y, Zhang R, Song Q, Lei L, Li X (2018) Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery. Colloids Surf B Biointerface 164:436–443

    Article  CAS  PubMed  Google Scholar 

  51. Wang W-R, Li A, Mei W, Zhu R-R, Li K, Sun X-Y, Qian Y-C, Wang S-L (2015) Dexamethasone sodium phosphate intercalated layered double hydroxides and their therapeutic efficacy in a murine asthma model. RSC Adv 5(30):23826–23834

    Article  CAS  Google Scholar 

  52. Georgieva D, Kostova B, Ivanova S, Rachev D, Tzankova V, Kondeva-Burdina M, Christova D (2014) pH-sensitive cationic copolymers of different macromolecular architecture as potential dexamethasone sodium phosphate delivery systems. J Pharm Sci 103(8):2406–2413

    Article  CAS  PubMed  Google Scholar 

  53. Ijaz N, Khan IU, Khalid I, Khan RU, Khan HA, Asghar S, Khalid SH, Shahzad Y, Yousaf AM, Hussain T (2020) In vitro and toxicological assessment of dexamethasone sodium phosphate loaded pH sensitive Pectin-g-poly (AA)/PVP semi interpenetrating network. Mater Today Commun 101325

  54. Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T (2019) Characterization of Nanomaterials: Tools and Challenges. In: Nanomaterials for Food Applications. Elsevier 313–353

  55. Trivedi MK, Patil S, Mishra R, Jana S (2015) Characterization of thermal and physical properties of biofield treated acrylamide and 2-chloroacetamide. Org Chem Curr Res 4(3):1000143

    Google Scholar 

  56. Kamyar A, Khakbiz M, Zamanian A, Yasaei M, Yarmand B (2019) Synthesis of a novel dexamethasone intercalated layered double hydroxide nanohybrids and their deposition on anodized titanium nanotubes for drug delivery purposes. J Solid State Chem 271:144–153

    Article  CAS  Google Scholar 

  57. Sahoo P, Panda H, Bahadur D (2013) Studies on the stability and kinetics of drug release of dexamethasone phosphate intercalated layered double hydroxides nanohybrids. Mater Chem Phys 142(1):106–112

    Article  CAS  Google Scholar 

  58. Gomez-Carracedo A, Alvarez-Lorenzo C, Gomez-Amoza J, Concheiro A (2004) Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. Int J Pharm 274(1–2):233–243

    Article  CAS  PubMed  Google Scholar 

  59. Maurer J, Schulz D, Siano D, Bock J (1984) Thermal Analysis of Acrylamide-Based Polymers. In: Analytical Calorimetry. Springer 43–55

  60. Dong K, Dong Y, You C, Xu W, Huang X, Yan Y, Zhang L, Wang K, Xing J (2016) Assessment of the drug loading, in vitro and in vivo release behavior of novel pH-sensitive hydrogel. Drug Deliv 23(1):174–184

    Article  CAS  PubMed  Google Scholar 

  61. Anbarasan B, Kumar RS, Thanka J, Ramaprabhu S, Shanmuganathan S (2019) Preparation and characterization of ph based carbopol 934p in-situ hydrogels for the treatment of harmful bacterial infections. Int J Pharm Sci Res 10(1):232–244

    CAS  Google Scholar 

  62. Sabaa M, Magid E, Mohamed R (2017) Maize starch-g-poly (Itaconic acid) and its application in sewage water treatment and as antimicrobial agent. Sci Rev Chem Commun 7(1):1–17

    Google Scholar 

  63. Bera R, Dey A, Chakrabarty D (2015) Synthesis, Characterization, and drug release study of acrylamide-co-itaconic acid based smart hydrogel. Polym Eng Sci 55(1):113–122

    Article  CAS  Google Scholar 

  64. Das S, Subuddhi U (2014) Controlled delivery of dexamethasone to the intestine from poly (vinyl alcohol)–poly (acrylic acid) microspheres containing drug-cyclodextrin complexes: influence of method of preparation of inclusion complex. RSC Adv 4(46):24222–24231

    Article  CAS  Google Scholar 

  65. Kim HY, Cheon JH, Lee SH, Min JY, Back S-Y, Song JG, Kim DH, Lim S-J, Han H-K (2020) Ternary nanocomposite carriers based on organic clay-lipid vesicles as an effective colon-targeted drug delivery system: preparation and in vitro/in vivo characterization. J Nanobiotech 18(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim JM, Kim DH, Park HJ, Ma HW, Park IS, jeong Son M, Ro SY, Hong S, Han HK, Lim SJ (2020) Nanocomposites-Based Targeted Oral Drug Delivery Systems with Infliximab in a Murine Colitis Model. J Nanobiotech 18(1):1–13

    Article  CAS  Google Scholar 

  67. Dong K, Dong Y, You C, Xu W, Huang X, Yan Y, Zhang L, Wang K, Xing J (2014) Assessment of the safety, targeting, and distribution characteristics of a novel pH-sensitive hydrogel. Colloids Surf B Biointerface 123:965–973

    Article  CAS  PubMed  Google Scholar 

  68. Wang K, Xu X, Wang Y, Yan X, Guo G, Huang M, Luo F, Zhao X, Wei Y, Qian Z (2010) Synthesis and characterization of poly (methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly (ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone. Int J Pharm 389(1–2):130–138

    Article  CAS  PubMed  Google Scholar 

  69. Ilgin P, Ozay H, Ozay O (2019) A new dual stimuli responsive hydrogel: modeling approaches for the prediction of drug loading and release profile. Eur Polym J 113:244–253

    Article  CAS  Google Scholar 

  70. Kalagasidis Krušić M, Danković D, Nikolić M, Filipović J (2004) Poly (acrylamide-co-itaconic acid) and Semi-IPNS with Poly (ethylene glycol): Preparation and Characterization. Macromol Chem Phys 205(16):2214–2220

    Article  CAS  Google Scholar 

  71. Pathania D, Verma C, Negi P, Tyagi I, Asif M, Kumar NS, Al-Ghurabi EH, Agarwal S, Gupta VK (2018) Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin. Carbohydr Polym 196:262–271

    Article  CAS  PubMed  Google Scholar 

  72. Pulat M, Uğurlu N (2016) Preparation and characterization of biodegradable gelatin-PAAm-based IPN hydrogels for controlled release of maleic acid to improve the solubility of phosphate fertilizers. Soft Mater 14(4):217–227

    Article  CAS  Google Scholar 

  73. Mesdaghinia A, Pourpak Z, Naddafi K, Nodehi RN, Alizadeh Z, Rezaei S, Mohammadi A, Faraji M (2019) An in vitro method to evaluate hemolysis of human red blood cells (RBCs) treated by airborne particulate matter (PM10). Methods X 6:156–161

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abdullah O, Minhas MU, Ahmad M, Ahmad S, Ahmad A (2019) Synthesis of hydrogels for combinatorial delivery of 5-fluorouracil and leucovorin calcium in colon cancer: optimization, in vitro characterization and its toxicological evaluation. Polym Bull 76(6):3017–3037

    Article  CAS  Google Scholar 

  75. Tan L, Xu X, Song J, Luo F, Qian Z (2013) Synthesis, characterization, and acute oral toxicity evaluation of pH-sensitive hydrogel based on MPEG, poly (ε-caprolactone), and itaconic acid. Biomed Res Int 2013:1–9

    Google Scholar 

Download references

Acknowledgment

We acknowledge, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan for providing necessary support and facilities for completion of project.

Funding

No external funding received

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Ullah Khan.

Ethics declarations

Conflict of interest

The author declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 55 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, N., Khan, I.U., Asghar, S. et al. Assessing the pH responsive and mucoadhesive behavior of dexamethasone sodium phosphate loaded itaconic acid-grafted-poly(acrylamide)/carbopol semi-interpenetrating networks. J Polym Res 28, 278 (2021). https://doi.org/10.1007/s10965-021-02643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02643-6

Keywords

Navigation