Skip to main content
Log in

Structure dielectric correlation of PEO/PVP incorporated with biosynthesized gold nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fresh leaves of Chenopodium murale (C. murale) have been used for the biosynthesis of gold nanoparticles (AuNP’s). AuNP’s have incorporated into polyethylene oxide /polyvinyl pyrrolidone (PEO/PVP) polymer blend by using the casting process. Transmission electron microscopy (TEM) reveals that AuNP’s are poly dispersed with size ranging 5–23.1 nm. Dc-conductivity shows an increase of conductivity (σ) with increasing temperature and the filler contents. Moreover, the AC conductivity (σac) and dielectric loss tangent (tan δ) have been investigated. The dielectric constant (ε') and dielectric loss (ε") are calculated from room temperature and up to 363 K. The inverse relation between permittivity (ε′) and frequency was correlated to dipoles direction of the electric field while higher dielectric loss (ε″) are attributed to the mobile charges in the blend matrices. Correlated barrier hopping model (CBH) proposed as a suitable route that elucidates the behavior of pure PEO/PVP polymer blend doped with Au-nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Scheme. 1.
Fig.2
Fig.3
Fig.4
Fig. 5
Fig.6
Fig. 7
Fig.8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. You J, Shi T, Liao Y, Li X, Su Z (2008) Temperature dependence of surface composition and morphology in polymer blend film. Polymer (Guildf) 49:4456–4461

    CAS  Google Scholar 

  2. Elashmawi IS, Hakeem NA, Abdelrazek EM (2008) Spectroscopic and thermal studies of PS/PVAc blends. Phys B Condens Matter 403:3547–3552

    CAS  Google Scholar 

  3. Barra GMO, Matins RR, Kafer KA, Paniago R, Vasques CT, Pires ATN (2008) Thermoplastic elastomer/polyaniline blends: Evaluation of mechanical and electromechanical properties. Polym Test 27:886–892

    CAS  Google Scholar 

  4. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B 406:1706–1712

    Google Scholar 

  5. Zhang Y, Burzynski R, Ghosal S, Casstevens MK (1986) Photorefractive Polymers and Composites. Adv Mater 8:111–125

    Google Scholar 

  6. Seabra AB, Oliveira MG (2004) Poly (vinyl alcohol) and poly (vinyl pyrrolidone) blended films for local nitric oxide release. Biomaterial 25:3773–3782

    CAS  Google Scholar 

  7. Tsutsumi H, Doi H, Oishi T (1997) Helical aggregate formation of cholate salts in poly (N-vinyl-2-pyrrolidinone) gel and its effect on conductivity enhancement. J Power Sources 68:364–367

    CAS  Google Scholar 

  8. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non Cryst Solids 358:3205–3211

    Google Scholar 

  9. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP / NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Memb Sci 454:200–211

    CAS  Google Scholar 

  10. Kumar KN, Sivaiah K (2014) Structural, thermal and optical properties of Tb 3+, Eu 3+ and co-doped (Tb 3++ Eu 3+): PEO+ PVP polymer films. J Lumin 147(316–323):2014

    Google Scholar 

  11. Choudhary S, Sengwa RJ (2011) Dielectric spectroscopy and viscosity studies of aqueous poly (ethylene oxide) and poly (vinyl pyrrolidone) blend. Indian J Phys 85:1591–1602

    CAS  Google Scholar 

  12. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    CAS  PubMed  Google Scholar 

  13. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  PubMed  Google Scholar 

  14. Huang X, El-Sayed MA (2010) Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Google Scholar 

  15. Narayanan KB, Sakthivel N (2010) Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61:1232–1238

    CAS  Google Scholar 

  16. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    CAS  PubMed  Google Scholar 

  17. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    CAS  PubMed  Google Scholar 

  18. Shabazyan TV, Perakis IE, Bigo JY (1998) Size-dependent surface plasmon dynamics in metal nanoparticles. Phys Rev Lett 81:3120–3123

    Google Scholar 

  19. Abdelghany AM, Abdelrazek EM, Badr SI, Morsi MA (2016) Effect of gamma-irradiation on (PEO/PVP)/ Au nanocomposite: Materials for electrochemical and optical applications. Mater Des 97:532–543

    CAS  Google Scholar 

  20. EL-Khatib AA, Hegazy AK, Galal HK (2004) Allelopathy in the rhizosphere and amended soil of Chenopodium murale L. Weed Biol Manag 4:35–42

    Google Scholar 

  21. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    CAS  Google Scholar 

  22. Pollak M (1971) On the frequency dependence of conductivity in amorphous solids. Philos. Mag A J Theor Exp Appl Phys 23:519–542

    CAS  Google Scholar 

  23. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    CAS  Google Scholar 

  24. Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637

    CAS  Google Scholar 

  25. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of materials research and technology 7:419–431

    CAS  Google Scholar 

  26. Ramesh S, Yahaya AH, Arof AKA (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294

    Google Scholar 

  27. Zeyada HM, Youssif MI, El-Ghamaz NA, Aboderbala MEO (2017) Spectral, structural, optical and dielectrical studies of UV irradiated Rose Bengal thin films prepared by spin coating technique. Phys B 506:75–82

    CAS  Google Scholar 

  28. Aggour YA, Aziz MS, Youssif MI (2000) Electrical and magnetic properties of coordinated polymers of Poly (ethylene glycol) allenyl methyl ether with iron chloride. Polym Testing 19:919–925

    CAS  Google Scholar 

  29. Druger SD, Nitzan A, Ratner MA (1985) Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys Rev 31:3939

    CAS  Google Scholar 

  30. Dutta DP, Biswas S, De SK (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

    CAS  Google Scholar 

  31. State R, Pap F, Dobrescu G, Munteanu C, Atkinson I, Balint I, Volceanov A (2015) Green synthesis and characterization of gold nanoparticles obtained by a direct reduction method and their fractal dimension. Environ Eng Manage J 14:587–593

    Google Scholar 

  32. Kuivalainen P, Stubb H, Isotalo H, Yli-Lahti P, Holmström C (1985) Electrical and optical properties of FeCl3-doped polyparaphenylene. Physics Review B 31:7900–7909

    CAS  Google Scholar 

  33. Kivelson S (1981) Electron Hopping Conduction in the Soliton Model of Polyacetylene. Phys Rev Lett 46:1344

    CAS  Google Scholar 

  34. Youssif MI, Mohamed FSh, Aziz MS (2004) Chemical and Physical properties of Al1-xFexPO4 alloys, Part I. Thermal stability; magnetic properties and related electrical conductivity. Mater Chem Phys 83:250–254

    CAS  Google Scholar 

  35. El-Naggar AM, El-Zaiat SY, Youssif MI, Alsaud FA (2013) Linear optical properties of (Cu2O)x (Al2O3)0.05−x (B2O3)0.20 (PbO)0.75 glasses in the spectral range 200–3300 nm. Opt Mater 35:2685–2690

    CAS  Google Scholar 

  36. Wang YD, Cakmak M (1998) Hierarchical structure gradients developed in injection-molded PVDF and PVDF–PMMA blends. I. Optical and thermal analysis. J Appl Polym Sci 68:909–926

    CAS  Google Scholar 

  37. Bisquert J, Garcia-Belmonte G (2004) Interpretation of AC Conductivity of Lightly Doped Conducting Polymers in Terms of Hopping Conduction. Russ J Electrochem 40:352–358

    CAS  Google Scholar 

  38. Abdelghany AM, Oraby AH, Asnag GM (2019) Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J Mol Struct 1180:15–25

    CAS  Google Scholar 

  39. Jayswal MS, Kanchan DK, Sharma P, Gondaliya N (2013) Relaxation process in PbI2–Ag2O–V2O5–B2O3 system: Dielectric, AC conductivity and modulus studies. Mater Sci Eng, B 178:775–784

    CAS  Google Scholar 

  40. Abdelghany AM, Oraby AH, Farea MO (2019) Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Phys B 560:162–173

    CAS  Google Scholar 

  41. Ray DK, Himanshu AK, Sinha TP (2007) Structural and low-frequency dielectric studies of conducting polymer nanocomposites. Indian J Pure Appl Phys 45:692–699

    CAS  Google Scholar 

  42. Fan L, Dang Z, Wei G, Nan CW, Min L (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater Sci Eng B 99:340–343

    Google Scholar 

  43. El Kony D (2004) Dielectric Relaxation in AL - Substituted Ni – Cd Spinel Ferrites Egypt. J Solids 27:285–297

    Google Scholar 

  44. Awadhia A, Patel SK, Agrawal SL (2006) Dielectric investigations in PVA based gel electrolytes. Prog Cryst Growth Charact Mater 52:61–68

    CAS  Google Scholar 

  45. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sanjeeviraja C (2010) Conductivity and dielectric studies on LiCeO2. J Rare Earths 28:435–438

    CAS  Google Scholar 

  46. Ram R, Rahaman M, Khastgir D (2015) Electrical properties of polyvinylidene fluoride (PVDF) /multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity. Composites: Part A: Applied Science and Manufacturing 69:30–39

  47. Elashmawi IS, Abdelrazek EM, Hezma AM, Rajeh A (2014) Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys B Condens Matter 434:57–63

    CAS  Google Scholar 

  48. Reddy CVS, Han X, Zhu QY, Mai LQ, Chen W (2006) Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron Eng 83:281–285

    Google Scholar 

  49. Tareev B (1979) Physics of Dielectric Materials. MIR Publications, Moscow, p 157

    Google Scholar 

  50. Pissis P, Georgoussis G, Bershtein VA, Neagu E, Fainleib AM (2002) Dielectric studies in homogeneous and heterogeneous polyurethane/polycyanurate interpenetrating polymer networks. J Non-Cryst Solids 305:150–158

    CAS  Google Scholar 

  51. Gerhardt R (1994) Impedance and Dielectric Spectroscopy Revisited: Distinguishing Localized Relaxation from Long-Range Conductivity. J Physics and Chemistry of Solids 55:1491–1506

    CAS  Google Scholar 

  52. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mate Sci and Eng B 85:11–15

    Google Scholar 

  53. Hemalatha KS, Sriprakash G, Ambika Prasad MVN, Damle R, Rukmani K (2015) Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy. J Apl Phys 118:154103

  54. Isasi J, López ML, Veiga ML, Ruiz-Hizky E, Pico C (1995) Structural characterization and electrical properties of a novel defect pyrochlore. J Solid State Chem 116:290–295

    CAS  Google Scholar 

  55. Mishra R, Baskarn N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112:261- 273

  56. Lanfredi S, Saia PS, Lebullenger R, Hermandes AC (2002) Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: Analysis by impedance spectroscopy. Solid State Ionics 146:329–339

    CAS  Google Scholar 

  57. Almond DP, West AR (1987) The activation entropy for transport in ionic conductors. Solid State Ionics 23:27–35

    CAS  Google Scholar 

  58. Khalil R (2017) Impedance and modulus spectroscopy of poly (vinyl alcohol)-Mg[ClO4]2 salt hybrid films. Appl Phys A 123:422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abdelghany.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssif, M.I., Abdelghany, A.M., Abdelrazek, E.M. et al. Structure dielectric correlation of PEO/PVP incorporated with biosynthesized gold nanoparticles. J Polym Res 27, 371 (2020). https://doi.org/10.1007/s10965-020-02348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02348-2

Keywords

Navigation