Skip to main content
Log in

Development of dopamine biosensor based on polyaniline/carbon quantum dots composite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Low level of dopamine (DA) in human brain may lead to neurological diseases, therefore, detection of DA is necessary. This study aims to develop 2 types of DA biosensor, i.e., electrochemical and fluorescent biosensors based on conducting polymer and quantum dot composite. The polyaniline/carbon quantum dots (PANi/CQDs) composite was prepared and characterized by UV–Vis absorption spectroscopy, fluorescence spectroscopy, FT–IR spectroscopy, scanning electron microscopy (SEM) and X–ray photoelectron spectroscopy (XPS). For electrochemical biosensor, the electrospun nanofiber film of PANi/CQDs was fabricated on fluorine doped tin oxide (FTO)–coated glass substrate. Cyclic voltammetry and amperometry were performed to study the electrochemical activity of the PANi/CQDs film toward detection of DA in neutral solution. The obtained film showed good sensitivity for DA sensing with sensitivity of 8.025 nA.cm−2.μM−1 and linear range of 10–90 μM (R2 = 0.99) with detection limit of 0.1013 μM. In addition, for fluorescent biosensor, the fluorescent intensity of PANi/CQDs in PBS solution was quenched with increasing DA concentrations. The PANi/CQDs fluorescent biosensor presented the linear range of 0.1–100 μM (R2 = 0.94) with detection limit of 0.0801 μM. The prepared PANi/CQDs composite can be promising candidate material for future use as DA biosensor in real sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vulto AG, Westenberg HG, Meijer LB, Versteeg DH (1986) The Dopamine Metabolite 3-Methoxytyramine Is Not a Suitable Indicator of Dopamine Release in the Rat Brain. J Neurochem 45:1387–1393

    Google Scholar 

  2. Diab N, Morales DM, Andronescu C, Masoud M, Schuhmann W (2019) A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine. Sensors Actuators B Chem 285:17–23

    CAS  Google Scholar 

  3. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    CAS  Google Scholar 

  4. Naccarato A, Gionfriddo E, Sindona G, Tagarelli A (2014) Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal Chim Acta 810:17–24

    CAS  PubMed  Google Scholar 

  5. Venton BJ, Wightman RM (2003) Psychoanalytical Electrochemistry: Dopamine and Behavior. Anal Chem 1:414–41A

    Google Scholar 

  6. Tammina SK, Yang D, Koppala S, Chengsheng C, Yang Y (2019) Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature. J Photochem Photobiol B Biol 194:61–70

    CAS  Google Scholar 

  7. Li H, Liu J, Yang M, Kong W, Huang H, Liu Y (2014) Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Adv 4:46437–46443

    CAS  Google Scholar 

  8. Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B Chem 186:380–387

    CAS  Google Scholar 

  9. Lv J, Feng S, Ding Y, Chen C, Zhang Y, Lei W, Hao Q, Chen SM (2019) A high-performance fluorescent probe for dopamine detection based on g-C3N4 nanofibers. Spectrochim Acta A 212:300–307

    CAS  Google Scholar 

  10. Megha R, Ali FA, Ravikiran YT, Ramana C, Kumar ABVK, Mishra DK, Vijayakumari SC, Kim D (2018) Conducting polymer nanocomposite based temperature sensors: A review. Inorg Chem Commun 98:11–28

    CAS  Google Scholar 

  11. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2005) Selective detection of dopamine using a functionalised polyaniline composite electrode. J Appl Electrochem 53:513–519

    Google Scholar 

  12. Zuo F, Jin L, Fu X, ZhangH YR, Chen S (2017) An electrochemiluminescent sensor for dopamine detection based ona dual-molecule recognition strategy and polyaniline quenching. Sensors Actuators B Chem 244:282–289

    CAS  Google Scholar 

  13. Govindasamy M, Chen SM, Mani V, Sathiyan A, Merlin JP, Al-Hemaid FMA, Ali MA (2016) Simultaneous determination of dopamine and uric acid in presence of high concentration of ascorbic acid using cetyltrimethylammonium bromide–polyaniline/activated charcoal composite. RSC Adv 6:100605–100613

    CAS  Google Scholar 

  14. Xie LQ, Zhang YH, Gao F, Wu QA, Xu PY, Wang SS, Gao NN, Wang QX (2017) A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin Chem Lett 28:41–48

    CAS  Google Scholar 

  15. Sabzi RE, Rezapour K, Samadi N (2010) Polyaniline-multi-wall-carbon nanotube nanocomposites as a dopamine sensor. J Serb Chem Soc 75:537–549

    CAS  Google Scholar 

  16. Yuan R, Liu H, Yu P, Wang H, Liu J (2018) Enhancement of adhesion, mechanical strength and anti-corrosion by multilayer superhydrophobic coating embedded electroactive PANI/CNF nanocomposite. J Polym Res 25(7):151

    Google Scholar 

  17. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 23:91

    Google Scholar 

  18. Xiong S, Zhang X, Wang R, Lu Y, Li H, Liu J, Li S, Qui Z, Wu B, Chu J, Zhang R, Gong M, Chen Z, Wang X (2019) Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 26(4):90

    Google Scholar 

  19. Hu A, Wang Y (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939

    Google Scholar 

  20. Yang S, Sun X, Wang Z, Wang X, Guo G, Pu Q (2017) One-step facile green synthesis of a highly fluorescent molecule through a way towards carbon dots and detection of dopamine based on in-situ formation of silver nanoparticles. Sensors Actuators B Chem 253:752–758

    CAS  Google Scholar 

  21. He YS, Pan CG, Cao HX, Yue MZ, Wang L, Liang GX (2018) Highly sensitive and selective dual-emission ratiometric fluorescencedetection of dopamine based on carbon dots-gold nanoclusters hybrid. Sensors Actuators B Chem 256:371–377

    Google Scholar 

  22. Chung TS, Zhao DL (2018) Applications of Carbon Quantum Dots (CQDs) in Membrane Technologies: A Review. Water Res 147:43–49

    PubMed  Google Scholar 

  23. Gao F, Du X, Hao X, Li S, An X, Liu M, Han N, Wang T, Guan G (2017) An electrochemically-switched BPEI-CQD/PPy/PSS membrane for selective separation of dilute copper ions from wastewater. Chem Eng J 328:293–303

    CAS  Google Scholar 

  24. Uthirakumar P, Devendiran M, Yun JH, Kim GC, Kalaiarasan S, Lee IH (2018) Role of carbon quantum dots and film thickness on enhanced UV shielding capability of flexible polymer film containing carbon quantum dots/N-doped ZnO nanoparticles. Opt Mater 84:771–777

    CAS  Google Scholar 

  25. Xie Y, Zhao Z (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources 337:54–64

    Google Scholar 

  26. Kamble P, Sadarani B, Majumdar A, Bhullar S (2017) Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J Drug Deliv Sci Technol 41:124–133

    CAS  Google Scholar 

  27. Lee JKY, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S (2017) Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog Polym Sci 41:40–84

    Google Scholar 

  28. Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    CAS  PubMed  Google Scholar 

  29. Anwane RS, Kondawar SB, Late DJ (2018) Bessel’s polynomial fitting for electrospun polyacrylonitrile/Polyaniline blend nanofibers based ammonia sensor. Mater Lett 211:70–73

    Google Scholar 

  30. Shin YJ, Kameoka QJ (2018) Amperometric cholesterol biosensor using layer-by-layer adsorption technique onto electrospun polyaniline nanofibers. J Ind Eng Chem 18:193–197

    Google Scholar 

  31. Aziz S, Sabzi M, Fattahi A, Arkan E (2017) Electrospun silk fibroin/PAN double-layer nanofibrous membranes containing polyaniline/TiO2 nanoparticles for anionic dye removal. J Polym Res 24(9):140

    Google Scholar 

  32. Alam AM, Liu Y, Park M, Park SJ, Kim HY (2015) Preparation and characterization of optically transparent and photoluminescent electrospun nanofiber composed of carbon quantum dots and polyacrylonitrile blend with polyacrylic acid. Polymer 59:35–41

    CAS  Google Scholar 

  33. Luo K, Jiang X (2019) Fluorescent Carbon Quantum Dots with Fe(III/II) Irons as Bridge for the Detection of Ascorbic Acid and H2O2. J Fluoresc 29(3):769–777

    CAS  PubMed  Google Scholar 

  34. Wu F, Su H, Wang K, Wong WK, Zhu X (2017) Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. J Nanomed 12:7375–7391

    CAS  Google Scholar 

  35. Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polymer 34:1833–1845

    CAS  Google Scholar 

  36. Wang L, Liu X, Lu Q, Wang X, Qu S (2012) A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angew Chem Int Ed 51:12215–12218

    Google Scholar 

  37. Tang J, Zhang J, Zhang Y, Xiao Y, Shi Y, Chen Y, Ding L, Xu W (2019) Influence of Group Modification at the Edges of Carbon Quantum Dots on Fluorescent Emission. Nanoscale Res Lett 14:241

    PubMed  PubMed Central  Google Scholar 

  38. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu CY (2010) One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem Mater 22:4528–4530

    CAS  Google Scholar 

  39. Shi Y, Pan Y, Zhang H, Zhang Z, Li MJ, Yi C (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 56:39–45

    CAS  PubMed  Google Scholar 

  40. Bera S, Kundu S, Khan H, Jana S (2018) Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing. J Alloys Compd 744:260–270

    CAS  Google Scholar 

  41. Zhang D, Wu Z, Li P, Zong X, Dong G, Zhang Y (2018) Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sensors Actuators B Chem 258:895–905

    CAS  Google Scholar 

  42. Golczak S, Kanciurzewska A, Fahlman M, Langer K, Langer JJ (2008) Comparative XPS surface study of polyaniline thin films. Solid State Ionics 179:2234–2239

    CAS  Google Scholar 

  43. Parra ER, Arango PJA, Palacio VJB (2010) XPS structure analysis of TiN/TiC bilayers produced by pulsed vacuum arc discharge. Dyna 163:64–74

    CAS  Google Scholar 

  44. Li Q, Mao D, Li D, Chen Y, Chen X, Xu X (2018) A versatile porous 3D polyurethane/polyacrylic acid (PU-PAA) membrane for one-step multiple contaminants water purification. J Membr Sci 563:191–198

    CAS  Google Scholar 

  45. Kim HB, Park JA, Kang JK, Lee SC (2017) Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Adv 7:18075–18084

    Google Scholar 

  46. Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G (2015) Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B 3:2487–2496

    CAS  PubMed  Google Scholar 

  47. Yang L, Liu S, Zhang Q, Li F (2012) Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode. Talanta 89:136–141

    CAS  PubMed  Google Scholar 

  48. Chen LC, Tseng KS, Ho KC (2006) General Kinetic Model for Amperometric Sensors Based on Prussian Blue Mediator and Its Analogs: Application to Cysteine Detection. Electroanalysis 18:1313–1321

    CAS  Google Scholar 

  49. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ 95:197–206

    CAS  Google Scholar 

  50. RahmanMM LJJ (2019) Electrochemical Dopamine Sensors Based on Graphene. J Electrochem Sci Technol 10(2):185–195

    Google Scholar 

  51. Maity D, Minitha CR, Kumar RTR (2019) Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater Sci Eng C Mater Biol Appl 105:110075

    CAS  PubMed  Google Scholar 

  52. He W, Gui R, Jin H, Wang B, Bu X, Fu Y (2018) Ratiometric fluorescence and visual imaging detection of dopamine based on carbon dots/copper nanoclusters dual-emitting nanohybrids. Talanta 178:109–115

    CAS  PubMed  Google Scholar 

  53. Zhao C, Jiao Y, Hua J, Yang J, Yang Y (2018) Hydrothermal Synthesis of Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for the Detection of Dopamine. J Fluoresc 28(1):269–276

    CAS  PubMed  Google Scholar 

  54. Li S, Ma Y, Liu Y, Xin G, Wang M, Zhang Z, Liu Z (2019) Electrochemical sensor based on a three dimensional nanostructured MoS2nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv 9(6):2997–3003

    CAS  Google Scholar 

  55. Algarra M, González-Calabuig A, Radotić K, Mutavdzic D, Ania CO, Lázaro-Martínez JM, Jiménez-Jiméneza J, Rodríguez-Castellón E, Del Valle M (2018) Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta 178:679–685

    CAS  PubMed  Google Scholar 

  56. Selvolini G, Lazzarini C, Marrazza G (2019) Electrochemical Nanocomposite Single-Use Sensor for Dopamine Detection. Sensors 19(14):3097

    CAS  Google Scholar 

  57. Prathap MA, Srivastava R (2013) Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sensors Actuators B Chem 177:239–250

    Google Scholar 

  58. Bao Y, Song J, Mao Y, Han D, Yang F, Niu L, Ivaska A (2011) Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis 23(4):878–884

    CAS  Google Scholar 

  59. Demirkan B, Bozkurt S, Şavk A, Cellat K, Gülbağca F, Nas SN, Alma MH, Sen F (2019) Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. Sci Rep 9:12258

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the Center of Excellence in Materials Science and Technology, Chiang Mai University. The authors would like to acknowledge Faculty of Medicine, Chiang Mai University for photoluminescence measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saengrawee Sriwichai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratlam, C., Phanichphant, S. & Sriwichai, S. Development of dopamine biosensor based on polyaniline/carbon quantum dots composite. J Polym Res 27, 183 (2020). https://doi.org/10.1007/s10965-020-02158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02158-6

Keywords

Navigation