Skip to main content
Log in

Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Highly stretchable silica/polyacrylamide (PAM) nanocomposite hydrogels were synthesized via in situ free radical polymerization in the presence of silica nanoparticles. The effect of particle size and content of silica nanoparticles on tensile properties and swelling behavior were investigated. The hydrogen bond between PAM molecule and silica nanoparticles was evidenced by Fourier transform infrared spectroscopy and the swelling behavior of hydrogels. The tensile strength of silica/PAM hydrogels is 2 times that of PAM gels, and the elongation at break is nearly 2800% when the silica particle size is 15 nm and the content is 10 wt%. This excellent stretching property of hydrogels was ascribed to the presence of hydrogen bond between PAM molecule and silica nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW (2016) Gelatin-Methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407

    Article  CAS  Google Scholar 

  2. Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900

    Article  Google Scholar 

  3. Nesrinne S, Djamel A (2017) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem 50:1916–1918

    Google Scholar 

  4. Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL (2018) Biocompatibility of injectable Resilin-based hydrogels. J Biomed Mater Res A 106:2229–2242

    Article  CAS  Google Scholar 

  5. Shakeel A, Singh A, Das S, Suhag D, Sharma AK, Rajput SK, Mukherjee M (2017) Synthesis and morphological insight of new biocompatible smart hydrogels. J Polym Res 24:113–122

    Article  Google Scholar 

  6. Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2014) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5:6505–6511

    Article  Google Scholar 

  7. Ziółkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D (2016) Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. J Mater Sci 51:1392–1399

    Article  Google Scholar 

  8. Gradinaru LM, Ciobanu C, Drobota M, Vlad S (2017) Poly(alkylene sebacate ether)urethane hydrogels for indomethacin delivery formulations. J Polym Res 24:99–111

    Article  Google Scholar 

  9. Zhang W, Ren G, Xu H, Zhang J, Liu H, Mu S, Cai X, Wu T (2016) Genipin cross-linked chitosan hydrogel for the controlled release of tetracycline with controlled release property, lower cytotoxicity, and long-term bioactivity. J Polym Res 23:156–164

    Article  Google Scholar 

  10. Büning D, Ennen F, Walter S, Hennecke T, Ulbricht M (2018) Potassium-sensitive poly(N-isopropylacrylamide)-based hydrogels for sensor applications. Polym Chem 9:3600–3614

    Article  Google Scholar 

  11. Jin R (2018) Injectable hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

  12. Jeong K-H, Park D, Lee Y-C (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24:112–121

    Article  Google Scholar 

  13. Illeperuma WRK, Sun JY, Suo Z, Vlassak JJ (2014) Fiber-reinforced tough hydrogels. Extreme Mech Lett 1:90–96

    Article  Google Scholar 

  14. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  15. Yan X, Chen Q, Zhu L, Chen H, Wei D, Chen F, Tang Z, Yang J, Zheng J (2017) High strength and self-healable gelatin/polyacrylamide double network hydrogels. J Mater Chem B 5:7683–7691

    Article  CAS  Google Scholar 

  16. Piao Y, Chen B (2017) Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int J Biol Macromol 101:791–798

    Article  CAS  Google Scholar 

  17. Li HJ, Jiang H, Haraguchi K (2018) Ultrastiff, Thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks. Macromolecules 51:529–539

    Article  CAS  Google Scholar 

  18. Bellingeri R, Mulko L, Molina M, Picco N, Alustiza F, Grosso C, Vivas A, Acevedo DF, Barbero CA (2018) Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties. Mater Sci Eng C 90:461–467

    Article  CAS  Google Scholar 

  19. Bardajee GR, Mizani F, Hosseini SS (2017) pH sensitive release of doxorubicin anticancer drug from gold nanocomposite hydrogel based on poly(acrylic acid) grafted onto salep biopolymer. J Polym Res 24:48–60

    Article  Google Scholar 

  20. Jin T, Stanciulescu I (2017) Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomater 49:247–259

    Article  CAS  Google Scholar 

  21. Guo H, Mussault C, Brûlet A, Marcellan A, Hourdet D, Sanson N (2016) Thermoresponsive toughening in LCST-type hydrogels with opposite topology: from structure to fracture properties. Macromolecules 49:4295–4306

    Article  CAS  Google Scholar 

  22. Wang Q, Gao Z (2016) A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids 94:127–147

    Article  CAS  Google Scholar 

  23. Wahid F, Yin JJ, Xue DD, Xue H, Lu YS, Zhong C, Chu LQ (2016) Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279

    Article  CAS  Google Scholar 

  24. Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ (2017) Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol 101:690–695

    Article  CAS  Google Scholar 

  25. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  26. Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  27. Jiang H, Zhang G, Feng X, Liu H, Li F, Wang M, Li H (2017) Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium hydroxide nanoparticles. Compos Sci Technol 140:54–62

    Article  CAS  Google Scholar 

  28. Wu L, Zeng L, Chen H, Zhang C (2012) Effects of silica sol content on the properties of poly(acrylamide)/silica composite hydrogel. Polym Bull 68:309–316

    Article  CAS  Google Scholar 

  29. Durme KV, Mele BV, Loos W, Prez FED (2005) Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide) hydrogels: a novel approach to improve response rates. Polymer 46:9851–9862

    Article  Google Scholar 

  30. Yin D, Ma L, Liu J, Zhang Q (2014) Pickering emulsion: A novel template for microencapsulated phase change materials with polymer-silica hybrid shell. Energy 64:575–581

    Article  CAS  Google Scholar 

  31. Bhardwaj P, Singh V, Mandal UK, Aggarwal S (2010) Polyacrylamide and poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica composite nanogels through in situ microemulsion polymerisation. J Mater Sci 45:1008–1016

    Article  CAS  Google Scholar 

  32. Shao C, Chang H, Meng W, Feng X, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318

    Article  CAS  Google Scholar 

  33. Li P, Siddaramaiah KNH, Yoo GH, Lee JH (2010) Poly(acrylamide/laponite) nanocomposite hydrogels: swelling and cationic dye adsorption properties. J Appl Polym Sci 111:1786–1798

    Article  Google Scholar 

  34. Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440–440

    Article  CAS  Google Scholar 

  35. Tan Y, Wu R, Li H, Ren W, Du J, Xu S, Wang J (2015) Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay. J Mater Chem B 3:4426–4430

    Article  CAS  Google Scholar 

  36. Zhao F, Qin X, Feng S (2011) Effects of microgel content and n -methylolacrylamide on the properties of microgel composite hydrogels prepared by postcrosslinking method. Polym Compos 33:44–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been sponsored by the National Key Research and Development Program of China (No. 2016YFC0301302), Seed Foundation of Innovation and Creation for Graduate Students of NWPU (Jinhua Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhong Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Chen, J., Liu, W. et al. Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy. J Polym Res 26, 119 (2019). https://doi.org/10.1007/s10965-019-1761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1761-1

Keywords

Navigation