Skip to main content
Log in

Dispersion parameters of cadmium chloride doped PVA-PVP blend films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Solution cast films of poly vinylalcohol (PVA) – poly vinylpyrrolidone (PVP) polymer blend, doped with different concentrations (from 0.5 wt% up to 40 wt%) of cadmium chloride (CdCl2) have been studied by analysing the data recorded using optical (UV-Vis) spectrometry. The modified band structure of PVA -PVP blends doped with CdCl2 has been studied using Moss model and Wemple - DiDomenco model. Optical parameters such as transmittance (T), reflectance (R), refractive index (n), average oscillator energy (E0), oscillator dispersion energy (Ed), real and imaginary part of dielectric constant (εr and εi) have been determined. The ratio of charge carrier concentration to effective mass (N/m*), plasma frequency (ωp), average oscillator wavelength (λo), oscillator strength (So), optical conductivity (σ) and optical momenta of spectra (M−1 and M−3) have been estimated for the PVA-PVP blend films doped with CdCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gopalan AL, Santhosh P, Mahesh KM, Nho JH, ChulGyun HS, Lee KP, Membr J (2008) Sci 325(2):683–690. doi:10.1016/j.memsci.2008.08.047

    CAS  Google Scholar 

  2. Bhide A, Hariharan K (2007) Eur Polym J 43(10):4253–4270. doi:10.1016/j.eurpolymj.2007.07.038

    Article  CAS  Google Scholar 

  3. Abdullah OG, Tahir DA, Kadir K (2015) J Mater Sci Mater Electron 26(9):6939–6944. doi:10.1007/s10854-015-3312-9

    Article  CAS  Google Scholar 

  4. Liu L, Yang D, Tian H, Ji Y (2012) Opt Commun 285(2):171–177. doi:10.1016/j.optcom.2011.08.066

    Article  CAS  Google Scholar 

  5. Lobo B, Ranganath MR, Ravi Chandran TSG, Venugopal Rao G, Ravindrachary V, Gopal S (1999) Phys Rev B 59:13693. doi:10.1103/PhysRevB.59.13693

    Article  CAS  Google Scholar 

  6. Abdelaziz M, Ghannam MM (2010) Physica B: Cond Matt 405(3):958–964. doi:10.1016/j.physb.2009.10.030

    Article  CAS  Google Scholar 

  7. Bhajantri RF, Ravindrachary V, Harisha A, Ranganathaiah C, Kumaraswamy GN (2007) Appl Phys 87(4):797–805. doi:10.1007/s00339-007-3923-y

    Article  CAS  Google Scholar 

  8. El-Khodary A (2010) Physica-B 405:3401–3408. doi:10.1016/j.physb.2010.05.012

    Article  CAS  Google Scholar 

  9. Mahmoud KH, Atef K (2014) Polym Compos 35:1786–1791. doi:10.1002/pc.22832

    Article  CAS  Google Scholar 

  10. Nanda Prakash MB, Manjunath A, Somashekar R (2013) Adv Cond Matter Phys 2013:6. doi:10.1155/2013/690629

    Google Scholar 

  11. Kramadhati S, Thyagarajan K (2013) Int J Eng Res Dev 6(8):15–18

    Google Scholar 

  12. Ravi M, Pavani Y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Mater Chem Phys 130:442–448. doi:10.1016/j.matchemphys.2011.07.006

    Article  CAS  Google Scholar 

  13. Kesavana K, Mathewa CM, Rajendrana S, Ulaganathanb M (2014) Mater Sci Eng B 184:26–33. doi:10.1016/j.mseb.2014.01.009

    Article  Google Scholar 

  14. Rodríguez J, Navarrete E, Dalchiele EA, Sánchez L, Ramón Ramos-Barrado J, Martín F (2013) J Power Sources 237:270–276. doi:10.1016/j.jpowsour.2013.03.043

    Article  Google Scholar 

  15. Ravi M, Bhavani S, Pavani Y, Narasimha Rao VVR (2013) Indian J Pure Appl Phys 51:362–366 http://nopr.niscair.res.in/bitstream/123456789/17693/1/IJPAP%2051(5)%20362-366.pdf

    CAS  Google Scholar 

  16. Behera M, Ram S (2013) Appl Nanosci 3:543–548. doi:10.1007/s13204-012-0159-8

    Article  CAS  Google Scholar 

  17. Campos JBG, Prokhorov E, Sanchez IC, Bárcenas JGL, Ramírez AM, Hernández JG, Castro YL, del Rió RE (2012) J Nanomater 2012:11. doi:10.1155/2012/925750

    Google Scholar 

  18. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) J Appl Polym Sci 103:125–133. doi:10.1002/app.24835

    Article  CAS  Google Scholar 

  19. Hemalatha K, Somashekarappa H, Somashekar R (2015) Adv Mater Phys Chem 5:408–418. doi:10.4236/ampc.2015.510041

    Article  Google Scholar 

  20. Patil RV, Ranganath MR, Lobo B (2014) Int J Chem Tech Res 6(3):1852 http://sphinxsai.com/2014/vol6pt3/10/(1852-1854)_ICMCT14.pdf

    CAS  Google Scholar 

  21. Baraker BM, Hammannavar PB, Lobo B (2015) AIP Conf. Proc 1665:0700371–0700373. doi:10.1063/1.4917901

    Google Scholar 

  22. Baraker BM, Lobo B (2016) Indian J Pure Appl Phys http://nopr.niscair.res.in/handle/123456789/35893

  23. Baraker BM, Lobo B (2017) Can J Phys. doi:10.1139/cjp-2016-0848

    Google Scholar 

  24. Abdullah OG, Tahir DA, Ahmad SS, Ahmad HT (2013) J Appl Phys 4:52–57

    Google Scholar 

  25. Jelinska N, Kalnins M, Tupureina V, Dzene A (2010) Scientific Journal of Riga Technical University Material Science and Applied Chemistry 21:55–61

    CAS  Google Scholar 

  26. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94(1):243–278. doi:10.1021/cr00025a008

    Article  CAS  Google Scholar 

  27. Chandrakala HN, Ramaraj B, Shivakumaraiah, Siddaramaiah (2014) J Alloys Compound 586:333–342. doi:10.1016/j.jallcom.2013.09.194

    Article  CAS  Google Scholar 

  28. Johan MR, Ting LM (2011) Int J Electro Chem Sci 6:4737–4748 https://www.researchgate.net/profile/Mohd_Johan/publication/267227702_Structural_Thermal_and_Electrical_Properties_of_Nano_Manganese

    CAS  Google Scholar 

  29. Hirankumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) J Power Sources 144:262–267. doi:10.1016/j.jpowsour.2004.12.019

    Article  CAS  Google Scholar 

  30. Abdelrazek EM (2007) Physica B: Cond Matter 400(1–2):26–32. doi:10.1016/j.physb.2007.06.013

    Article  CAS  Google Scholar 

  31. Sharma P, Katyal SC (2007) J Phys D Appl Phys 40:2115. doi:10.1088/0022-3727/40/7/038

    Article  CAS  Google Scholar 

  32. Mahmoud SA, Akl AA, Al-Shomar SM (2009) Physica B: Cond. Matter 404(16):2151–2158. doi:10.1016/j.physb.2009.04.003

    Article  CAS  Google Scholar 

  33. M. A. Omar Elementary Solid State Physics, Pearson Education Inc. (2002) chapter 8, p.372

  34. Baleva M, Goranova E, Darakchieva V, Kossionides S, Kokkosis M, Jordanov P (2002) Vacuum 69(1–3):425–429. doi:10.1016/S0042-207X(02)00369-X

    Article  CAS  Google Scholar 

  35. Moss TS (1959) Optical properties of semiconductors. Butterworth Scientific Publications LTD, London

    Google Scholar 

  36. Wemple SH, DiDomenco M (1971) Phys Rev B 3:1338. doi:10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  37. Musa WA, Hamad TK, Nabi MTA (2013) J Al-Nahrain Univer 16:119–123 http://jnus.org/pdf/1/2013/1/884.pdf

    Google Scholar 

  38. Hamad TK, (2013) J Al-Nahrain Univer. 16, 164–170. http://jnus.org/pdf/1/2013/1/891.pdf

  39. Oleary SK, Zukotynsiki S, Perz JM (1997) J Non-Cryst Solids 210(2–3):249–253. doi:10.1016/S0022-3093(96)00612-6

    Article  CAS  Google Scholar 

  40. Mahdi MA, Al-Ani SKJ (2012) Int J Nanoelectronics and Mater 5:11–24 http://dspace.unimap.edu.my:80/xmlui/handle/123456789/41266

    Google Scholar 

  41. Ammar AH (2002) Appl Surf Sci 201(1–4):9–19. doi:10.1016/S0169-4332(02)00223-4

    Article  CAS  Google Scholar 

  42. Lucarelli A, Lupi S, Calvani P, Maselli P (2002) Phys Rev B 65:054511. doi:10.1103/PhysRevB.65.054511

    Article  Google Scholar 

  43. Ugwu EI, Olayinka AS, Olabode FI (2009) J Eng Appl Sci 4:126–131 http://docsdrive.com/pdfs/medwelljournals/jeasci/2009/126-131.pdf

    Google Scholar 

  44. Nakajima M, Yoshikawa T, Sogo K, Hirai Y (2006) Microelectron Eng 8(4–9):876–879. doi:10.1016/j.mee.2006.01.097

    Article  Google Scholar 

  45. Dabhade RV, Bodas DS, Gangal SA (2004) Sens Actuators B-Chem 98(1):37–40. doi:10.1016/j.snb.2003.08.020

    Article  CAS  Google Scholar 

  46. Shang S, Li L, Yang X, Wei Y (2009) Compos Sci Technol 69(7–8):1156–1159. doi:10.1016/j.compscitech.2009.02.013

    Article  CAS  Google Scholar 

  47. Yu JM, Tao XM, Tam HY, Demokan MS (2005) Appl Surf Sci 252:1283–1292. doi:10.1016/j.apsusc.2005.02.144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to University Science Instruments Centre (USIC), Karnatak University, Dharwad (KUD) for providing facilities to record the UV-Visible-NIR spectra. B.M.B acknowledges the receipt of UPE fellowship from KUD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraker, B.M., Lobo, B. Dispersion parameters of cadmium chloride doped PVA-PVP blend films. J Polym Res 24, 84 (2017). https://doi.org/10.1007/s10965-017-1242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1242-3

Keywords

Navigation