Skip to main content
Log in

Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al2O3-polydimethylsiloxane binary nanocomposite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a novel multifunctional superamphiphobic coating for anticorrosion was successfully prepared on aluminum substrate via a simple spraying technique. Al2O3 nanoparticles were chemically grafted onto montmorillonite (MMT) nanosheets via coupling effect of NH2-C3H6-Si(OC2H5)3 (KH-550) and then modified by low surface energy material polydimethylsiloxane (PDMS). The ethylene tetrafluoroethylene (ETFE) composite coating with 25 wt% MMT/Al2O3-PDMS binary nanocomposite exhibited well-designed nano/μ structures and possessed superamphiphobicity with high contact angles towards water (164°), glycerol (158°) and ethylene glycol (155°). This coating demonstrated outstanding self-cleaning ability and strong adhesive ability (Grade 1 according to the GB/T 9286). The superhydrophobicity could be maintained after 8000 times abrasion or annealing treatment for 2 h under 350 °C. The coating still retained high water-repellence after immersion in 1 mol/L HCl (146°), 1 mol/L NaOH (144°) and 3.5 wt% NaCl (151°) solutions for 30 d. It should be noted that this superamphiphobic coating revealed excellent long-term corrosion protection with extremely low corrosion rate (4.3 × 10−3 μm/year) and high protection performance (99.999%) after 30 d immersion in 3.5 wt% NaCl solutions based on electrochemical corrosion measurements. It is believed that such integrated functional coating could pave new way for self-cleaning and anticorrosion applications under corrosive/abrasive environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Peng C-W, Hsu C-H, Lin K-H, Li P-L, Hsieh M-F, Wei Y, Yeh J-M, Yu Y-H (2011) Electrochemical corrosion protection studies of aniline-capped aniline trimer-based electroactive polyurethane coatings. Electrochim Acta 58:614–620

    Article  CAS  Google Scholar 

  2. Cubides Y, Castaneda H (2016) Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions. Corros Sci 109:45–161

    Article  Google Scholar 

  3. Mirabedini SM, Kiamanesh A (2013) The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog Org Coat 76:1625–1632

    Article  CAS  Google Scholar 

  4. Mirhosseini SS, Razavi RS, Taheran M, Barekat M (2016) Wear behavior of polyurethane/carbon black coatings on 6061 aluminum alloy substrates. Prog Org Coat 97:37–43

    Article  CAS  Google Scholar 

  5. Yuan R, Wu S, Wang B, Liu Z, Mu L, Ji T, Chen L, Liu B, Wang H, Zhu J (2016) Superamphiphobicity and electroactivity enabled dual physical/chemical protections in novel anticorrosive nanocomposite coatings. Polymer 85:37–46

    Article  CAS  Google Scholar 

  6. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347:1132–1135

    Article  CAS  Google Scholar 

  7. Li H, Yu S, Han X (2016) Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties. Chem Eng J 283:1443–1454

    Article  CAS  Google Scholar 

  8. Wu X, Wyman I, Zhang G, Lin J, Liu Z, Wang Y, Hu H (2016) Preparation of superamphiphobic polymer-based coatings via spray-and dip-coating strategies. Prog Org Coat 90:463–471

    Article  CAS  Google Scholar 

  9. Wang H, Yan L, Gao D, Liu D, Wang C, Sun L, Zhu Y (2014) Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water. Wear 319:62–68

    Article  CAS  Google Scholar 

  10. Jiang W, Grozea CM, Shi Z, Liu G (2014) Fluorinated raspberry-like polymer particles for superamphiphobic coatings. ACS Appl Mater Interfaces 6:2629–2638

    Article  CAS  Google Scholar 

  11. Ge B, Zhang Z, Men X, Zhu X, Zhou X (2014) Sprayed superamphiphobic coatings on copper substrate with enhanced corrosive resistance. Appl Surf Sci 293:271–274

    Article  CAS  Google Scholar 

  12. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70

    Article  CAS  Google Scholar 

  13. Chu Z, Seeger S (2014) Superamphiphobic surfaces. Chem Soc Rev 43:2784–2798

    Article  CAS  Google Scholar 

  14. Tuominen M, Teisala H, Haapanen J, Mäkelä JM, Honkanen M, Vippola M, Bardage S, Wålinderg MEP, Swerin A (2016) Superamphiphobic overhang structured coating on a biobased material. Appl Surf Sci 389:135–143

    Article  CAS  Google Scholar 

  15. Saifaldeen ZS, Khedir KR, Camci MT, Ucar A, Suzer S, Karabacak T (2016) The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough al alloy surfaces. Appl Surf Sci 379:55–65

    Article  CAS  Google Scholar 

  16. Peng P, Shi B, Lan Y (2011) Preparation of PDMS-silica nanocomposite membranes with silane coupling for recovering ethanol by pervaporation. Sep Sci Technol 46:420–427

    Article  CAS  Google Scholar 

  17. Yuan Z, Bin J, Wang X, Wang M, Huang J, Peng C, Xing S, Xiao J, Zeng J, Xiao X, Fu X (2014) Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating. Surf Coat Technol 254:97–103

    Article  CAS  Google Scholar 

  18. Kapridaki C, Maravelaki-Kalaitzaki P (2013) TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat 76:400–410

    Article  CAS  Google Scholar 

  19. Chakradhar RPS, Kumar VD, Rao JL, Basu BJ (2011) Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour. Appl Surf Sci 257:8569–8575

    Article  CAS  Google Scholar 

  20. Gao N, Yan YY, Chen XY, Mee DJ (2011) Superhydrophobic surfaces with hierarchical structure. Mater Lett 65:2902–2905

    Article  CAS  Google Scholar 

  21. Nine MJ, Cole MA, Johnson L, Tran DNH, Losic D (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interfaces 7:28482–28493

    Article  CAS  Google Scholar 

  22. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  23. Zamanizadeh HR, Shishesaz MR, Danaee I, Zaarei D (2015) Investigation of the corrosion protection behavior of natural montmorillonite clay/bitumen nanocomposite coatings. Prog Org Coat 78:256–260

    Article  CAS  Google Scholar 

  24. Lai M-C, Chang K-C, Yeh J-M, Liou S-J, Hsieh M-F, Chang H-S (2007) Advanced environmentally friendly anticorrosive materials prepared from water-based polyacrylate/Na+-MMT clay nanocomposite latexes. Eur Polym J 43:4219–4228

    Article  CAS  Google Scholar 

  25. Zhang Y, Shao Y, Zhang T, Meng G, Wang F (2013) High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Prog Org Coat 76:804–811

    Article  CAS  Google Scholar 

  26. Meera KMS, Sankar RM, Murali A, Jaisankar SN, Mandal AB (2012) Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings. Colloid Surf B 90:204–210

    Article  Google Scholar 

  27. Tuukka T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23:673–678

    Article  Google Scholar 

  28. Xiu Y, Liu Y, Hess DW, Wong CP (2010) Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21:155705

    Article  Google Scholar 

  29. Barbero DR, Saifullah MSM, Hoffmann P, Mathieu HJ, Anderson D, Jones GAC, Welland ME, Steiner U (2007) High-resolution nanoimprinting with a robust and reusable polymer mold. Adv Funct Mater 17:2419–2425

    Article  CAS  Google Scholar 

  30. Yuan R, Wu S, Yu P, Wang B, Mu L, Zhang X, Zhu Y, Wang B, Wang H, Zhu J (2016) Superamphiphobic and electroactive nanocomposite towards self-cleaning, anti-wear and anti-corrosion coatings. ACS Appl Mater Interfaces 8:12481–12493

    Article  CAS  Google Scholar 

  31. Zhou M, Liu Q, Wu S, Gou Z, Wu X, Xu D (2016) Starch/chitosan films reinforced with polydopamine modified MMT: effects of dopamine concentration. Food Hydrocoll 61:678–684

    Article  CAS  Google Scholar 

  32. Yang C, Zhang Q, Li J, Gao R, Li Z, Huang W (2016) Catalytic activity and crystal structure modification of Pd/γ-Al2O3-TiO2 catalysts with different Al2O3 contents. J Energy Chem 25:375–380

    Article  Google Scholar 

  33. Kumar AM, Gasem ZM (2015) In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution. Prog Org Coat 78:387–394

    Article  Google Scholar 

  34. Peng C-W, Chang K-C, Weng C-J, Lai M-C, Hsu C-H, Hsu S-C, Hsu Y-Y, Hung W-I, Wei Y, Yeh J-M (2013) Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochim Acta 95:192–199

    Article  CAS  Google Scholar 

  35. Hinderliter BR, Croll SG, Tallman DE, Su Q, Bierwagen GP (2006) Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties. Electrochim Acta 51:4505–4515

    Article  CAS  Google Scholar 

  36. Zhang D, Qian H, Wang L, Li X (2016) Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments. Corros Sci 103:230–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is financially supported by National Science Foundation of China (21507009, 21676052), Natural Science Foundation of Heilongjiang Province (B2016002, QC2015012) and Young Innovative Talent Training Program of Heilongjiang Province (UNPYSCT-2016083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruixia Yuan or Huaiyuan Wang.

Electronic supplementary material

ESM 1

(DOCX 2367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Wu, S., Wang, H. et al. Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al2O3-polydimethylsiloxane binary nanocomposite. J Polym Res 24, 59 (2017). https://doi.org/10.1007/s10965-017-1222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1222-7

Keywords

Navigation