Skip to main content
Log in

Structure and morphology of silica-reinforced polypropylene composites modified with m-EPR copolymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of different silica (SiO2) types and different contents of two metallocene propylene-based m-EPR elastomers (differing in molecular weight and viscosity) on interfacial properties, structure and morphology of isotactic polypropylene/SiO2/m-EPR composites were investigated. Four silica fillers differing in size (nano- vs. micro-) and surface properties (hydrophilic vs. hydrophobic i.e. polar vs. non-polar) were chosen and added in 4 vol% to isotactic polypropylene. The m-EPR elastomers were added to iPP/SiO2 96/4 composites as possible impact modifier and compatibilizer at the same time in 5, 10, 15, and 20 vol% per 100 vol% of composites (phr). The investigation confirmed the overall prevailing of separated morphology of ternary iPP/SiO2/m-EPR composites, i.e. selectivity of dispersed m-EPR and silica particles toward iPP matrix as was predicted on the basis of adhesion properties. The increase of crystallinity degree and spherulite size with addition of m-EPR elastomers indicated significant solidification effect of added elastomers in addition to opposite nucleation effect of silica particles owing to surface character of filler. The effects of different silica fillers and different contents of two m-EPR elastomers were discussed within the context of morphology/structure-adhesion property relationships of the iPP/SiO2/m-EPR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karian HG (2003) Handbook of polypropylene and polypropylene composites. Marcel Dekker, New York

    Book  Google Scholar 

  2. Wypych G (2000) Handbook of fillers. ChemTec Publishing, Toronto

    Google Scholar 

  3. Rothon RN (2006) Particulate-Filled Polymer Composites. Rapra, Shawbury

    Google Scholar 

  4. Karger-Kocsis J, Fakirov S (2010) In: Karger-Kocsis J, Fakirov S (eds) Nano- and micromechanics of polymer blends and composites. Munich, Carl Hanser Verlag

    Google Scholar 

  5. Rothon RN (2010) In: Xanthos M (ed) Functional Fillers for Plastics. Weinheim, Wiley-VCH Verlag

    Google Scholar 

  6. Pustak A, Pucić I, Denac M, Švab I, Pohleven J, Musil V, Šmit I (2013) J. Appl. Polym. Sci. 5:3099–3106

    Article  Google Scholar 

  7. Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) J. Appl. Polym. Sci. 100:2684–2696

    Article  CAS  Google Scholar 

  8. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Polymer 42:167–183

    Article  CAS  Google Scholar 

  9. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Compos. Sci. Technol. 62:1327–1340

    Article  CAS  Google Scholar 

  10. Zhou TH, Ruan WH, Mai YL, Rong MZ, Zhang MQ (2008) Compos. Sci. Technol. 68:2858–2863

    Article  CAS  Google Scholar 

  11. Bracho D, Dougnac VN, Palza H, Quijada RJ (2012) Nano Mat. doi:10.1155/2012/263915

  12. Pustak A, Leskovac M, Denac M, Švab I, Pohleven J, Makarovič M, Musil V, Šmit I (2014) J. Reinf. Plast. Compos. 33:851–861

    Article  Google Scholar 

  13. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Eur. Polym. J. 41:1965–1978

    Article  CAS  Google Scholar 

  14. Buaziz A, Jaziri M, Dalmas F, Massardier V (2014) Polym. Eng. Sci. 54:2187–2196

    Article  Google Scholar 

  15. Chen JH, Rong MZ, Ruan WH, Zhang MQ (2009) Compos. Sci. Technol. 69:252–259

    Article  CAS  Google Scholar 

  16. Wang W-Z, Liu TJ (2008) Appl. Polym. Sci. 109:1654–1660

    Article  CAS  Google Scholar 

  17. Mae H, Omiya M, Kishimoto KJ (2008) Appl. Polym. Sci. 110:1145–1157

    Article  CAS  Google Scholar 

  18. Panaitescu DM, Vulunga Z, Notingher PV, Nicolae C (2013) Polym. Eng. Sci. 53:2081–2092

    CAS  Google Scholar 

  19. AA EL-M, SS I (2011) Physicochem Probl Miner Process 46:295–305

    Google Scholar 

  20. Pustak A, Denac M, Leskovac M, Švab I, Musil V, Šmit I (2015) J. Appl. Polym. Sci. 132:41486–41498

    Article  Google Scholar 

  21. Pustak A, Denac M, Leskovac M, Švab I, Musil V, Šmit I (2015) Polym –Plast Technol 54:647–660

    Article  CAS  Google Scholar 

  22. Uotila R, Hippi U, Paavola S, Seppala J (2005) Polymer 46:7923–7930

    Article  CAS  Google Scholar 

  23. Martin G, Barres C, Sonntag P, Garois N, Cassagnau P (2009) Mater. Chem. Phys. 113:889–898

    Article  CAS  Google Scholar 

  24. Bazgir S, Katbab AA, Nazockdast HJ (2004) Appl. Polym. Sci. 92:2000–2007

    Article  CAS  Google Scholar 

  25. Liu Y, Kontopoulou M (2006) Polymer 47:7731–7739

    Article  CAS  Google Scholar 

  26. VISTAMAXX™ Specialty Elastomers (2004) General Technical Overview. Exxon Mobil, Belgium

  27. Cheng C, Racine G, Srinivas S, Datta S (2004) Novel Propylene-Based Specialty Elastomers: Structure and Properties. Proceedings of ANTEC, 62nd Annual technical conference, Chicago: 4220–4223

  28. Rouland W (1961) Acta Crystallogr. 14:1180–1185

    Article  Google Scholar 

  29. van Oss CJ, Giese RF, Li Z, Murphy K, Norris J, Chaudhury MK, Good RJ (1993) In: Mittal KL (ed) Contact Angle, Wettability and Adhesion. Utrecht, VSP

    Google Scholar 

  30. Wu S (1973) J. Adhes. 5:39–55

    Article  CAS  Google Scholar 

  31. Zipper P, Janosi A, Wrentschur E (1993) Journal de Physique IV. Supplement au Journal de Physique I 3:33–36

    CAS  Google Scholar 

  32. Mittal V (2010) In: Mittal V (ed) Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, John Wiley & Sons

    Chapter  Google Scholar 

  33. Urashita S, Kawakats T, Doi M (2000) Prog. Theor. Phys. Suppl. 138:412–413

    Article  CAS  Google Scholar 

  34. Premphet K, Horanont P (2000) Polymer 41:9283–9290

    Article  CAS  Google Scholar 

  35. Work WJ, Horie K, Hess M, Stepto RFT (2004) IUPAC Pure Appl Chem 76:1985–2007

    Article  CAS  Google Scholar 

  36. Steinmann S, Gronski W, Friedrich C (2002) Polymer 43:4467–4477

    Article  CAS  Google Scholar 

  37. Ma CG, Mai YL, Rong MZ, Ruan WH, Zhang MQ (2007) Compos. Sci. Technol. 67:2997–3005

    Article  CAS  Google Scholar 

  38. Reignier J, Favis BD, Heuzey M-C (2003) Polymer 44:49–59

    Article  CAS  Google Scholar 

  39. Pukanszky B, Belina K, Rockenbauer A, Maurer FHJ (1994) Composites 25:205–214

    Article  CAS  Google Scholar 

  40. Ray SS, Bandyopadhyay J, Bousmina M (2008) Eur. Polym. J. 44:3133–3145

    Article  Google Scholar 

  41. Karger-Kocsis J, Kiss L, Kuleznev VN (1984) Polym. Compos. 25:122–126

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Ministry of Science, Education and Sports of the Republic of Croatia and the Ministry of Higher Education, Science and Technology of the Republic of Slovenia is acknowledged. We are most grateful to Mr. Uwe Schachtely for his advice concerning the choice of nano- and microsilicas as well as Degussa AG for generous donation of silica samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anđela Pustak or Matjaž Denac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustak, A., Denac, M., Leskovac, M. et al. Structure and morphology of silica-reinforced polypropylene composites modified with m-EPR copolymers. J Polym Res 23, 37 (2016). https://doi.org/10.1007/s10965-016-0927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0927-3

Keywords

Navigation