Skip to main content
Log in

Effect of matrix morphology on mechanical and barrier properties of polypropylene nanocomposite films containing preferentially aligned organoclay platelets

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The objective of this research was to study and optimize the effect of matrix morphology on the desirable mechanical and barrier properties of polypropylene/organoclay (PP/clay) nanocomposite films. Nanocomposites with different organoclay contents and three different matrix morphologies were compared with neat PP under identical conditions. The degree of organoclay dispersion was controlled through the use of a compatibilizer, maleic anhydride grafted polypropylene (PP-g-MA). The nanocomposite films were first prepared by melt casting and then subjected to annealing and re-crystallization. Organoclay platelets in all films were found to align parallel to the film plane. Crystalline PP in as-prepared films was found to have a preferred orientation with the lamellae normally lying perpendicular to the machine direction. Upon annealing, the stacks of parallel lamellae, aligned perpendicular to the machine direction and the film surface, tend to be more orderly than in as-prepared films (see models). No crystal orientation was found in re-crystallized films. A clear increase in elastic modulus and tensile strength with increasing organoclay content was observed. Relative oxygen permeability (ROP) of nanocomposite films decreased with increasing amount of organoclay. The effect of matrix morphology is as follows: annealed films display the highest elastic modulus, tensile strength and ROP, followed by as-prepared and re-crystallized films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci A 1(5):929–942

    Article  CAS  Google Scholar 

  2. Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38:161–174

    Article  CAS  Google Scholar 

  3. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layer silicate nanocomposites. Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  4. Galgali G, Agarwal S, Lele A (2004) Effect of clay orientation on the tensile modulus of polypropylene-nanoclay composites. Polymer 45(17):6059–6069

    Article  CAS  Google Scholar 

  5. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984

    Article  CAS  Google Scholar 

  6. Xu B, Zheng Q, Song Y, Shangguan Y (2006) Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer 47(8):2904–2910

    Article  CAS  Google Scholar 

  7. Dong W, Liu Y, Zhang X, Gao J, Huang F, Song Z, Tan B, Qiao J (2005) Preparation of high barrier and exfoliated-type nylon-6/ultrafine full-vulcanized powdered rubber/clay nanocomposites. Macromolecules 38:4551–4553

    Article  CAS  Google Scholar 

  8. Fereydoon M, Tabatabaei SH, Ajji A (2014) Properties of co-extruded nanoclay-filled aliphatic nylon (PA6)/linear low-density polyethylene and aromatic nylon (MXD6)/linear low-density polyethylene multilayer films. J Plast Film Sheet. doi:10.1177/8756087914528348

    Google Scholar 

  9. Choi WJ, Kim HJ, Yoon KH, Kwon OH, Hwang CI (2006) Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst. J Appl Polym Sci 100(6):4875–4879

    Article  CAS  Google Scholar 

  10. Tsai TY, Li CH, Chang CH, Cheng WH, Hwang CL, Wu RJ (2005) Preparation of exfoliated polyester/clay nanocomposites. Adv Mater 17(14):1769–1773

    Article  CAS  Google Scholar 

  11. Villaluenga JPG, Khayet M, Lopez-Manchado MA, Valentin JL, Seoane B, Mengual JI (2007) Gas transport properties of polypropylene/clay composite membrances. Eur Polym J 43(4):1132–1143

    Article  CAS  Google Scholar 

  12. Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blow films. Eur Polym J 43(9):3757–3765

    Article  CAS  Google Scholar 

  13. Miltner HE, Assche GV, Pozsgay A, Pukansky B, Mele BV (2006) Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallization. Polymer 47(3):826–835

    Article  CAS  Google Scholar 

  14. Langhe D, Hiltner A, Baer E (2011) Melt crystallization of syndiotactic polypropylene in nanolayer confinement impacting structure. Polymer 52(25):5879–5889

    Article  CAS  Google Scholar 

  15. Lu C, Mai YW (2007) Permeability modeling of polymer-layered silicate nanocomposites. Compos Sci Technol 67(14):2895–2902

    Article  CAS  Google Scholar 

  16. BL1.3W:SAXS (2014) Synchrotron Light Research Institute, Nakhon Ratchasima. http://www.slri.or.th/en/index.php?option=com_content&view=article&id=3&Itemid=85,%20accessed%2015/12/2013. Accessed 27 Aug 2014

  17. Zhu PW, Edward G (2008) Orientation distribution of parent-daughter structure of isotactic polypropylene: a study using simultaneous synchrotron WAXS and SAXS. J Mater Sci 43:6459–6467

    Article  CAS  Google Scholar 

  18. Dean DM, Rebenfeld L, Register RA (1998) Matrix molecular orientation in fiber-reinforced polypropylene composites. J Mater Sci 33:4797–4812

    Article  CAS  Google Scholar 

  19. Sadeghi F, Ajji A, Carreau PJ (2007) Analysis of row nucleated lamellar morphology of polypropylene obtained from the cast film process: effect of melt rheology and process conditions. Polym Eng Sci 47(7):1170–1178

    Article  CAS  Google Scholar 

  20. Tabatabaei SH, Carreau PJ, Ajji A (2009) Structure and properties of MDO stretched polypropylene. Polymer 50(16):3981–3989

    Article  CAS  Google Scholar 

  21. Cole KC, Ajji A (1999) Orientation characterization in polypropylene. Kluwer Publishers, Dordrecht

    Google Scholar 

  22. Solarski S, Ferreira M, Devaux E (2005) Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 46(25):11187–11192

    Article  CAS  Google Scholar 

  23. Moore JR, Edward P (1996) Polypropylene handbook. Hanser-Gardner Publication, Inc., Cincinnati

    Google Scholar 

  24. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Structure and properties of polypropylene-based nanocomposites: effect of PP-g-MA to organoclay ratio. Polymer 48(18):5308–5323

    Article  CAS  Google Scholar 

  25. Dong Y, Bhattacharyya D (2008) Effects of clay type, clay/compatibilizer content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Compos A-Appl S 39:1177–1191

    Article  Google Scholar 

  26. Hegde RR, Bhat GS, Spruiell JE, Benson R (2013) Structure and properties of polypropylene-nanoclay composites. J Polym Res 20:323–335

    Article  Google Scholar 

  27. Lei SG, Hoa SV, Ton-that MT (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66(10):1274–1279

    Article  CAS  Google Scholar 

  28. Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H, Kasahara T, Yamaguchi N, Yagi N, Amemiya Y (2007) Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Macromolecules 40(6):2036–2045

    Article  CAS  Google Scholar 

  29. Stribeck N, Nochel U, Camarillo AA, Roth SV, Dommach M, Bosecke P (2007) SAXS study of oriented crystallization of polypropylene from a quiescent melt. Macromolecules 40(13):4535–4545

    Article  CAS  Google Scholar 

  30. Kalapakdee A, Amornsakchai T (2014) Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: Effects of fiber content and matrix orientation. Polym Test 37:36–44

    Article  CAS  Google Scholar 

  31. Maiti P, Hikosaka M, Yamada K, Toda A, Gu F (2000) Lamellae thickening in isotactic polypropylene with high tacticity crystallized at high temperature. Macromolecules 33(24):9069–9075

    Article  CAS  Google Scholar 

  32. Lai SM, Chen WC, Zhu XS (2009) Melt mixed compatibilized polypropylene/clay nanocomposites: part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos A-Appl S 40(6–7):754–765

    Article  Google Scholar 

  33. Somwangthanaroj A, Lee EC, Solomon MJ (2003) Early stage quiescent and flow-induced crystallization of intercalated polypropylene nanocomposites by time-resolved light scattering. Macromolecules 36:2333–2342

    Article  CAS  Google Scholar 

  34. Liang Y, Cao W, Li Z, Wang Y, Wu Y, Zhang L (2008) A new strategy to improve the gas property of isobutylene-isoprene rubber/clay nanocomposites. Polym Test 27(3):270–276

    Article  CAS  Google Scholar 

  35. Tarapow JA, Bernal CR, Alvaraz VA (2008) Mechanical properties of polypropylene/clay nanocomposites: effect of clay content, polymer/clay compatibility, and processing conditions. J Appl Polym Sci 111(2):768–778

    Google Scholar 

  36. Yuan W, Guo M, Miao Z, Liu Y (2010) Influence of maleic anhydride grafted polypropylene on the dispersion of clay in polypropylene/clay nanocomposites. Polym J 42:745–751

    Article  CAS  Google Scholar 

  37. Ghelichi M, Qazvini NT, Jafari SH, Khonakdar HA, Reuter U (2012) Nanoclay dispersion in a miscible blend: an assessment through rheological analysis. J Polym Res 19:9830–9838

    Article  Google Scholar 

  38. Chiu FC, Chu PH (2006) Characterization of solution-mixed polypropylene/clay nanocomposites without compatibilizers. J Polym Res 13:73–78

    Article  CAS  Google Scholar 

  39. Dumont MJ, Reyna-Valencia A, Emond JP, Bousmina M (2006) Barrier properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 103(1):618–625

    Article  Google Scholar 

  40. Roozemond PC, Ma Z, Cui K, Li L, Peters GWM (2014) Multimorphological crystallization of Shish-Kebab structures in isotactic polypropylene: quantitative modeling of parent–daughter crystallization kinetics. Macromolecules 47(25):5152–5162

    Article  CAS  Google Scholar 

  41. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F, Xiang M (2014) Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res 21:485–494

    Article  Google Scholar 

Download references

Acknowledgments

PS is supported by a scholarship from the Royal Golden Jubilee Ph.D. Program (Thailand Research Fund). TA gratefully acknowledges the supports of the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education and the Synchrotron Light Research Institute (SLRI). We would also like to thank the staff at Beamline BL 2.2 at SLRI for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taweechai Amornsakchai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanguansat, P., Amornsakchai, T. Effect of matrix morphology on mechanical and barrier properties of polypropylene nanocomposite films containing preferentially aligned organoclay platelets. J Polym Res 22, 30 (2015). https://doi.org/10.1007/s10965-015-0676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0676-8

Keywords

Navigation