Skip to main content
Log in

Investigation on crystallinity, performance and processability of naturally occurring halloysite nanotubes compatibilized sPS/LCP thermoplastic nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This article deals with the analyses of the effect of halloysite nanotubes (HNTs) and modified HNTs (mH) with minimal loading on the properties of syndiotactic polystyrene (sPS)/liquid crystalline polymer (LCPs) blends. Modification of HNTs with N-(β-aminoethyl)-γ-aminopropyl-trimethoxysilane (APTMS) is confirmed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) studies. Intensification of crystallinity of the thermoplastic blends due to induced nucleation by the halloysite nanotubes are corroborated by XRD as well as Differential Scanning Calorimetry (DSC). Due to favorable LCP fibrillations, nanocomposites exhibited higher dynamic mechanical properties than the matrix polymer as observed from the Dynamic Mechanical Analysis (DMA). Rheological properties of the blends were upgraded whereas; the chain orientations along with their alignments were highly influenced by both unmodified and modified HNTs. Modification of HNTs brings compatibility in between the blend partners revealing improved crystallization, morphological, rheological, and thermo-mechanical properties relative to that of pure matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hull D, Clyne TW (1981) In Cambridge solid state science series. An introduction to composite materials. Cambridge University Press, Cambridge, pp 3

  2. Bose S, Pramanik N, Das CK, Ranjan A, Saxena AK (2010) Mater Des 31:1148–1155

    Article  CAS  Google Scholar 

  3. Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Macromolecules 19:2464

    Article  CAS  Google Scholar 

  4. Jaymand M (2011) Macro Res 19(10):998–1005

    Article  CAS  Google Scholar 

  5. Liu R, Li ZY, Mai BY, Wu Q, Liang GD, Gao HY, Zhu FM (2013) J Polym Res 20(2):64

    Article  Google Scholar 

  6. Nayak GC et al (2012) J App Polym Sci 124:629–637

    Article  CAS  Google Scholar 

  7. Tjong SC (2003) Mater Sci Eng R 41:1–60

    Article  Google Scholar 

  8. Benson SD, Moore RB (2010) Polymer 51:5462–5472

    Article  CAS  Google Scholar 

  9. Kumar S, Rath T, Mahaling RN, Das CK (2007) Compos Part A 38:1304–1317

    Article  Google Scholar 

  10. Sun G, Chen G, Liu Z, Chen M (2010) Carbon 48:1434–1440

    Article  CAS  Google Scholar 

  11. Park CIL, Choi WM, Kim MH, Park OO (2004) J Polym Sci Part B Polym Phys 42:1685–1693

    Article  CAS  Google Scholar 

  12. Hatui G, Das CK (2013) J Polym Res 20(2):77

    Article  Google Scholar 

  13. Du M, Guo B, Jia D (2010) Polym Int 59:574–582

    CAS  Google Scholar 

  14. White RD, Bavykin DV, Walsh FC (2012) Nanotechnology 23(6):065705

    Article  Google Scholar 

  15. Kang DY, Zang J, Jones CW, Nair S (2011) J Phys Chem C 115:7676–7685

    Article  CAS  Google Scholar 

  16. Liu M, Guo B, Du M, Chen F, Jia D (2009) Polymer 50:3022–3030

    Article  CAS  Google Scholar 

  17. Pal P, Kundu MK, Kalra S, Das CK (2012) Open J App Sci 2:277–282

    Article  CAS  Google Scholar 

  18. Yuan P et al (2008) J Phys Chem C 112:15742–15751

    Article  CAS  Google Scholar 

  19. Kundu MK, Hatui G, Das CK, Nigam V, Saxena AK (2014) Polym Plast Tech Eng. doi:10.1080/03602559.2014.961079

    Google Scholar 

  20. Li C, Liu J, Qu X, Guo B, Yang Z (2008) J Appl Polym Sci 110:3638–3646

    Article  CAS  Google Scholar 

  21. Li C, Wang J, Feng S, Yang Z, Ding S (2013) J Mater Chem A 1:8045

    Article  CAS  Google Scholar 

  22. Yah WO, Takahara A, Lvov YM (2012) J Am Chem Soc 134:1853–1859

    Article  CAS  Google Scholar 

  23. Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface, in studies in surface and catalysis. Elsevier, New York, ISBN: 978-0-444-81928-4, 93: 3–556

    Google Scholar 

  24. Zou M, Du M, Zhu H, Xu C, Fu Y (2012) J Phys D Appl Phys 45:325302

    Article  Google Scholar 

  25. Barrientos-Ramírez S et al (2011) App Catal A Gen 406:22–33

    Article  Google Scholar 

  26. Yuan C, Zhang J, Chen G, Yang J (2011) Chem Commun 47:899–901

    Article  CAS  Google Scholar 

  27. Yuan C, Wang J, Chen G, Zhang J, Yang J (2011) Soft Matter 7:4039–4044

    Article  CAS  Google Scholar 

  28. Chen G et al (2007) J Polym Sci Part B Polym Phys 45:654

    Article  CAS  Google Scholar 

  29. Dai X et al (2004) Macromolecules 37:5615

    Article  CAS  Google Scholar 

  30. Woo EM, Sun YS, Yang CP (2001) Prog Polym Sci 26:945–983

    Article  CAS  Google Scholar 

  31. Hwang SH, Kim MJ, Jung JC (2002) Eur Polym J 38:1881–1885

    Article  CAS  Google Scholar 

  32. Wang C, Huang CL, Chen YC, Hwang GL, Tsai SJ (2008) Polymer 49:5564–5574

    Article  CAS  Google Scholar 

  33. Abdullayev E et al (2011) ACS Appl Mater Interfaces 3:4040–4046

    Article  CAS  Google Scholar 

  34. Hatui G et al (2012) Mater Des 42:184–191

    Article  CAS  Google Scholar 

  35. Mukherjee M, Bose S, Nayak GC, Das CK (2010) J Polym Res 17(2):265–272

    Article  CAS  Google Scholar 

  36. Tjong SC, Liu SL, Li RKY (1995) J Mater Sci 30:353–360

    Article  CAS  Google Scholar 

  37. Douglas ET, George PS (1992) Polym Int 27:165

    Article  Google Scholar 

  38. Prashantha K, Lacrampe MF, Krawczak P (2011) Express Polym Lett 5(4):295–307

    Article  CAS  Google Scholar 

  39. Bose S, Mukherjee M, Das CK (2009) Polym Plast Tech Eng 48(2):158–163

    Article  CAS  Google Scholar 

  40. Soundararajaha QY, Karunaratne BSB, Rajapakse RMG (2009) Mater Chem Phys 113:850–855

    Article  Google Scholar 

  41. Goyal RK, Tiwari AN, Negi YS (2008) Mater Sci Eng A 491(1–2):230

    Article  Google Scholar 

  42. Zhao M, Liu P (2008) J Therm Anal Calorim 94(1):103–107

    Article  CAS  Google Scholar 

  43. Deng S, Zhang J, Ye L, Wu J (2008) Polymer 49:5119–5127

    Article  CAS  Google Scholar 

  44. Du M, Guo B, Jia D (2006) Euro Polym J 42:1362–1369

    Article  CAS  Google Scholar 

  45. Xiong H, Gao Y, Li HM (2007) Express Polym Lett 1(7):416–426

    Article  CAS  Google Scholar 

  46. Lin Y, Ng KM, Chan CM, Sun G, Wu J (2011) J Colloid Interface Sci 358:423–429

    Article  CAS  Google Scholar 

  47. Mukherjee M et al (2006) Mater Sci Engg A 441:206–214

    Article  Google Scholar 

  48. Pahupongsab P, Thongyai S, Wacharawichanant S, Prasertdham P (2010) Polym Sci Ser A 52(3):279–287

    Article  Google Scholar 

  49. Datta A, Chen HH, Baird DG (1993) Polymer 34:759

    Article  CAS  Google Scholar 

  50. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) J Polym Res 16(4):443–454

    Article  CAS  Google Scholar 

  51. Siegmann A, Dagan A, Kenig S (1985) Polymer 26:1325

    Article  CAS  Google Scholar 

  52. Sinha D, Kole S, Banerjee S, Das CK (1986) Rheol Acta 25:507–512

    Article  CAS  Google Scholar 

  53. Nishimura T, Kataoka T (1984) Rheol Acta 23:401–407

    Article  CAS  Google Scholar 

  54. Hashimi SAR, Takeshi K (2007) J App Polym Sci 104:2212–2218

    Article  Google Scholar 

  55. Kleman M (1989) Rep Prog Phys 52:555–654

    Article  CAS  Google Scholar 

  56. Chen H (Thesis, 2008) Simulations of shearing rheology of thermotropic liquid-crystalline polymers. The University of Akron.

  57. Rahman A, Gupta RK, Bhattacharya SN, Ray S, Costa F (2011) Low and high shear rate rheology of injection moulding grade liquid crystal polymers; Engineers Australia, 787–793

  58. Kiss G, Porter RS (1978) J Polym Sci Polym Symp 65:193–211

    Article  CAS  Google Scholar 

  59. Kiss G, Porter RS (1980) J Polym Sci Polym Phy Ed 18:361–388

    Article  CAS  Google Scholar 

  60. Gao P, Lu XH, Chai CK (1996) Polym Eng Sci 36:2771–2780

    Article  CAS  Google Scholar 

  61. Hsies TT, Tiu C, Simon GP, Wu RW (1999) J Non-Newtonian Fluid Mech 86:15–35

    Article  Google Scholar 

  62. Fan Y, Shaocong D, Tanner IR (2003) Korea-Aust Rheol J 15:109–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Kanti Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, M.K., Pal, P., Hatui, G. et al. Investigation on crystallinity, performance and processability of naturally occurring halloysite nanotubes compatibilized sPS/LCP thermoplastic nanocomposites. J Polym Res 22, 29 (2015). https://doi.org/10.1007/s10965-015-0665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0665-y

Keywords

Navigation