Skip to main content
Log in

Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This contribution demonstrates the use of a novel photoinduced grafting approach in the fabrication of anhydrous proton conducting poly(vinylidene fluoride) (PVDF) membranes. The process basically involves grafting of styrene onto cast PVDF films under UV light, subsequent sulfonation and triazole doping. Degree of grafting was explored as a function of UV irradiation time, as varied from 0.5 h to 8 h. The synthesized graft copolymers were characterized by 1H NMR and FT-IR spectroscopic analyses. Their thermal properties were examined by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) measurements. To assess the potential of the membranes to be used in fuel cell applications, their ion exchange capacities, water uptakes, and hydration numbers were measured and correlated with degree of grafting. Anhydrous proton conducting properties of 1H-1,2,4-triazole-doped PVDF-g-PSSA polymers were studied. PVDF-g-PSSA(Tri)2 with a degree of grafting of 50.8 % showed a maximum water-free proton conductivity of approximately 5 × 10−2 mS/cm at 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muftuoglu AE, Tasdelen MA, Yagci Y (2010) Handbook of photochemistry and photophysics of polymeric materials. In: Norman S. Allen (ed) Chapter 13: Photografting of polymeric materials, John Wiley & Sons, New Jersey, pp 509–539

  2. Muftuoglu AE, Tasdelen MA, Mishra MK, Yagci Y (2009) Chapter 11: Block and graft copolymers. In: Mishra MK, Yagci Y (eds) Handbook of vinyl polymers: radical polymerization, process, and technology. CRC Press Taylor & Francis Group, New York, pp 307–344

    Google Scholar 

  3. Deng J, Wang L, Liu L, Yang W (2009) Prog Polym Sci 34(2):156–193

    Article  CAS  Google Scholar 

  4. Turmanova S, Minchev M, Vassilev K, Danev G (2008) J Polym Res 15:309–318

    Article  CAS  Google Scholar 

  5. Sauguet L, Boyer B, Ameduri B, Boutevin (2006) Macromolecules 39:9087

    Article  CAS  Google Scholar 

  6. Motupally S, Becker AJ, Weidner JW (2000) J Electrochem Soc 147(9):3171–3177

    Article  CAS  Google Scholar 

  7. Chuy C, Basura VI, Simon E, Holdcroft S, Horsfall J, Lovell KV (2000) J Electrochem Soc 147(12):4453–4458

    Article  Google Scholar 

  8. Chuy C, Ding J, Swanson E, Holdcroft S, Horsfall J, Lovell KV (2003) J Electrochem Soc 150(5):E271–E279

    Article  CAS  Google Scholar 

  9. Kim J, Kim B, Jung B (2002) J Membr Sci 207:129

    Article  CAS  Google Scholar 

  10. Chen J, Asano M, Yamaki T, Yoshida M (2006) J Membr Sci 269:194

    Article  CAS  Google Scholar 

  11. Holmberg S, Holmlund P, Nicolas R, Wilen CE, Kallio T, Sundholm G (2004) Macromolecules 37:9909

    Article  CAS  Google Scholar 

  12. Shen Y, Qiu X, Shen J, Xi J, Zhu W (2006) J Power Sources 161:54

    Article  CAS  Google Scholar 

  13. Nasef MM, Zubir NA, Ismail AF, Khayet M, Dahlan KZM, Saidi H (2006) J Membr Sci 268:96

    Article  CAS  Google Scholar 

  14. Asano M, Chen J, Maekawa Y, Sakamura T, Kubota H, Yoshida M (2007) J Polym Sci, Part A: Polym Chem 45:2624–2637

    Article  CAS  Google Scholar 

  15. Schuster ME, Meyer WH (2003) Annu Rev Mater Res 33:233–261

    Article  CAS  Google Scholar 

  16. Kreuer KD (2001) J Membrane Sci 185(1):29–39

    Article  CAS  Google Scholar 

  17. Celik SU, Bozkurt A, Hosseini SS (2012) Prog Polym Sci 37:1265–1291

    Article  CAS  Google Scholar 

  18. Li S, Zhou Z, Zhang Y, Liu M (2005) Chem Mater 17:5884

    Article  CAS  Google Scholar 

  19. Chen J, Asano M, Maekawa Y, Yoshida M (2006) J Membr Sci 277:249

    Article  CAS  Google Scholar 

  20. Chen J, Asano M, Yamaki T, Yoshida M (2006) J Power Sources 158:69

    Article  CAS  Google Scholar 

  21. Chen J, Asano M, Maekawa Y, Sakamura T, Kubota H, Yoshida M (2006) Electrochem Solid-State Lett 9:G184

    Article  CAS  Google Scholar 

  22. Sen U, Çelik SÜ, Ata A, Bozkurt AJ (2008) Hydr Ener 33(11):2808–2815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Scientific Research Fund of Fatih University under the project number P50021001_G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ekrem Muftuoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golcuk, S., Muftuoglu, A.E., Celik, S.U. et al. Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. J Polym Res 20, 144 (2013). https://doi.org/10.1007/s10965-013-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0144-2

Keywords

Navigation