Skip to main content

Advertisement

Log in

Morphological, electrical, thermal and mechanical properties of phthalocyanine/multi-wall carbon nanotubes nanocomposites prepared by masterbatch dilution

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Multi-wall carbon nanotubes reinforced thermoset phthalocyanine (Pc/CNTs) nanocomposites were successfully prepared through melt-mixing and masterbatch dilution and investigated for their morphologies and physical properties. Pc/CNTs nanocomposites were prepared by the more optimized masterbatch method. The feasibility of using Pc/CNTs nanocomposites was investigated by evaluating their electrical, dielectric, mechanical, morphological and thermal properties as a function of CNT loading. Consequently, the dramatic electrical and dielectric transition happened when CNT content was about 1 wt%. For the 1 wt% CNTs-filled Pc nanocomposites, a 51.4 % increase in flexural strength was obtained and flexural modulus was also improved from 3851.7 MPa to 3973.3 MPa. All Pc/CNTs nanocomposites showed high thermal and thermo-oxidative stabilities up to 535 °C. Pc/CNTs nanocomposites with multifunctional properties can find uses under some critical circumstances with requirements of high strength and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Warzel ML, Keller TM (1993) Tensile and fracture properties of a phthalonitrile polymer. Polymer 34:663–666

    Article  CAS  Google Scholar 

  2. Lei YJ, Zhao R, Zhan YQ, Meng FB, Zhong JC, Yang XL, Liu XB (2010) Generation of multiwalled carbon nanotubess from iron–phthalocyanine polymer and their novel dielectric properties. Chem Phys Lett 496:139–142

    Article  CAS  Google Scholar 

  3. Keller TM (1988) High-performance, electrically conductive polymers. Chemtech 18:635–639

    CAS  Google Scholar 

  4. Giuliani JF, Keller TM (1989) Phthalonitrile conductive polymer chemica vapor sensors. Sens Mater 1:247–253

    Google Scholar 

  5. Sastri SB, Armistead JP, Keller TM (1996) Phthalonitrile-carbon fiber composites. Polym Compos 17:816–822

    Article  CAS  Google Scholar 

  6. Yang XL, Lei YJ, Zhong JC, Zhao R, Liu XB (2011) Preparation and thermal properties of novel phthalonitrile oligomer containing biphenyl ethernitrile/bisphthalonitrile blends. J Appl Polym Sci 119:882–887

    Article  CAS  Google Scholar 

  7. Du RH, Li WT, Liu XB (2009) Synthesis and thermal properties of bisphthalonitriles containing aromatic ether nitrile linkages. Polym Degrad Stabil 94:2178–2183

    Article  CAS  Google Scholar 

  8. Brunovska Z, Lyon R, Ishida H (2000) Thermal properties of phthalonitrile functional polybenzoxazines. Therm Acta 357:195–203

    Article  Google Scholar 

  9. Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stabil 93:1577–1584

    Article  CAS  Google Scholar 

  10. Schartel B, Potschke P, Knoll U, Abdel-Goad M (2005) Fire behaviour of polyamide 6/multiwall carbon nanotubes nanocomposites. Eur Polym J 41:1061–1070

    Article  CAS  Google Scholar 

  11. Zhan YQ, Meng FB, Yang XL, Lei YJ, Zhao R, Liu XB (2011) Synthesis, characterization and properties of multifunctional poly(arylene ether nitriles) (PEN)/CNTs/Fe3O4 nanocomposites. J Polym Sci, Part B: Polym Phys 49:611–619

    Article  CAS  Google Scholar 

  12. Du JH, Bai J, Cheng HM (2007) The present status and key problems of carbon nanotubes based polymer composites. Express Polymer Lett 1:253–273

    Article  CAS  Google Scholar 

  13. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P (2008) Multi-walled carbon nanotubes filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Lett 10:735–745

    Article  Google Scholar 

  14. Sun J, Gao L (2003) Development of a dispersion process for carbon nanotubess in ceramic matrix by heterocoagulation. Carbon 41:1063–1068

    Article  CAS  Google Scholar 

  15. Mukherjee M, Bose S, Nayak GC, Das CK (2010) A study on the properties of PC/LCP/MWCNT with and without compatibilizers. J Polym Res 17:265–272

    Article  CAS  Google Scholar 

  16. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  17. Zhan YQ, Yang XL, Meng FB, Lei YJ, Zhong JC, Zhao R, Liu XB (2011) Viscoelasticity and thermal stability of poly(arylene ether nitrile) nanocomposites with various functionalized carbon nanotubes. Polymer Int 60:1342–1348

    CAS  Google Scholar 

  18. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  19. Du JH, Zhao L, Zeng Y, Zhang LL, Li F, Liu PF, Liu C (2011) Electrical conductivity of carbon nanotubes/poly (vinylidene fluoride) composites prepared by high-speed mechanical mixing. Carbon 49:1094–1100

    Article  CAS  Google Scholar 

  20. Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotubes nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977

    Article  CAS  Google Scholar 

  21. Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubess in polycarbonate melts. Polymer 49:974–984

    Article  CAS  Google Scholar 

  22. Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotubes composites. Compos Interfac 10:389–404

    Article  Google Scholar 

  23. Luechinger NA, Booth N, Heness G, Bandyopadhyay S, Grass RN, Stark WJ (2008) Surfactant-free, melt-processable metal–polymer hybrid materials: use of graphene as a dispersing agent. Adv Mater 20:3044–3049

    Article  CAS  Google Scholar 

  24. Ahmad K, Pan W, Shi SL (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotubes and alumina composites. Appl Phys Lett 89:1331221–1331223

    Google Scholar 

  25. Yang YL, Gupta MC, Dudley KL, Lawrence RW (2004) The fabrication and electrical properties of carbon nanofibre–polystyrene composites. Nanotechnology 15:1545–1548

    Article  CAS  Google Scholar 

  26. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotubes/epoxy composites. Polymer 47:2036–2045

    Article  CAS  Google Scholar 

  27. El Shafee E, El Gamal M, Isa M (2012) Electrical properties of multi walled carbon nanotubess/poly(vinylidenefluoride/trifluoroethylene) nanocomposites. J Polym Res 19:9805–9813

    Article  Google Scholar 

  28. Yang XL, Zhan YQ, Yang J, Zhong JC, Zhao R, Liu XB (2012) Synergetic effect of cyanogen functionalized carbon nanotubes and graphene on the mechanical and thermal properties of poly (arylene ether nitrile). J Polym Res 19:9806–9812

    Article  Google Scholar 

  29. Schartel B, Braun U, Knoll U, Bartholmai M, Goering H, Neubert D, Pötschke P (2008) Mechanical, thermal, and fire behavior of bisphenol A polycarbonate/multi-wall carbon nanotubes nanocomposites. Polymer Eng Sci 48:149–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51173021), Major Science and Technology Project in Sichuan Province (2010 FZ 0117) and "863" National Major Program of High Technology (2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yang, X., Wei, J. et al. Morphological, electrical, thermal and mechanical properties of phthalocyanine/multi-wall carbon nanotubes nanocomposites prepared by masterbatch dilution. J Polym Res 19, 9969 (2012). https://doi.org/10.1007/s10965-012-9969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9969-3

Keywords

Navigation