Skip to main content
Log in

Post-yield fracture behaviour of PA-6/LDPE-g-MA/nanoclay ternary nanocomposites: semiductile-to-ductile transition

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Melt-mixed ternary nanocomposites of PA-6/LDPE-g-MA/organoclay, (CloisiteTM 30B) with microscopically confirmed flocculated-intercalated morphology have been evaluated for their plane-stress fracture and failure-modes following essential work of fracture (EWF) approach. The damping properties (tan δ) revealed nanoclay-induced chain mobility restrictions causing an increase in Tg of the nanocomposites by ~5–12 °C relative to the neat PA-6 and by ~12–21 °C relative to the optimized impact modified PA-6 matrix. A reduction in area-controlled EWF (w e : energy dissipated in the fracture plane) value was observed with 6 wt. % of nanoclay indicating a decreased resistance to crack initiation whereas a sharp-rise in the volume-controlled fracture-parameter, i.e. non-EWF (βw p ) by ~108 % of the composite with 4wt.-% of nanoclay loading compared to optimized PA-6 blend matrix (NLC0) showed enhanced ductility and resistance to crack propagation. A semiductile-to-ductile transition (STD) was observed in the composition range of 2–4 wt. % of nanoclay loading which is also supported by a systematic transition in the nature of deformation mode as indicated from fracture surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu S (1983) Impact fracture mechanisms in polymer blends: rubber-toughened nylon. J Polymer Sci Pol Phys Edition 21:699–716

    Article  CAS  Google Scholar 

  2. Huang JJ, Paul DR (2006) Comparison of fracture behavior of nylon 6 versus an amorphous polyamide toughened with maleated poly (ethylene-1-octene) elastomers. Polymer 47:3505–3519

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang Z, Yang JL, Friedrich K (2006) Temperature dependence of crack initiation fracture toughness of various nanoparticles filled polyamide 66. Polymer 47:679–689

    Article  CAS  Google Scholar 

  4. Nair SV, Goettler LA, Lysek BA (2002) Toughness of nanoscale and multiscale polyamide 66 composites. Polymer Eng Sci 42:1872–1882

    Article  CAS  Google Scholar 

  5. Chen L, Phang IY, Wong SC, Lv PF, Liu T (2006) Embrittlement mechanisms of nylon 66/organoclay nanocomposites prepared by melt compounding process. Mater Manuf Process 22:153–158

    Article  Google Scholar 

  6. Ahn YC, Paul DR (2006) Rubber toughening of nylon 6 nanocomposites. Polymer 47:2830–2838

    Article  CAS  Google Scholar 

  7. Liao CZ, Tjong SC (2011) Mechanical and thermal behavior of polyamide 6/silicon carbide nanocomposites toughened with maletaed styrene-ethylene-butylene-styrene elastomer. Fatig Fract Eng Mater Struct 35:56–63

    Article  Google Scholar 

  8. Qiao Y, Avlar S, Chakravarthula SS (2005) Essential fracture work of nylon 6-silicate nanocomposites. J Appl Polymer Sci 95:815–819

    Article  CAS  Google Scholar 

  9. Lim SH, Dasari A, Yu ZZ, Mai YW, Liu S, Yong MS (2007) Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Compos Sci Tech 67:2914–2923

    Article  CAS  Google Scholar 

  10. Vu HN, Vermogen A, Gauthier C, Karine MV, Cavaillé JY (2008) Microstructure and fracture behavior of semicrystalline polymer–clay nanocomposites. J Polymer Sci, Part B: Polymer Phys 46:1820–1836

    Article  CAS  Google Scholar 

  11. He C, Liu T, Tjiu WC, Sue HJ, Yee AF (2008) Microdeformation and fracture mechanisms in polyamide-6/Organoclay nanocomposites. Macromolecules 41:193–202

    Article  CAS  Google Scholar 

  12. Bao SP, Tjong SC (2007) Impact essential work of fracture of polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA elastomer. Composites: Part A 38:378–387

    Article  Google Scholar 

  13. Baldi F, Bignotti F, Tieghi G, Ricco T (2006) Rubber toughening of polyamide 6/organoclay nanocomposites obtained by melt blending. J Appl Polymer Sci 99:3406–3416

    Article  CAS  Google Scholar 

  14. Tjong SC, Bao SP (2005) Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer. J Polymer Sci B Polymer Phys 43:585–595

    Article  CAS  Google Scholar 

  15. Chen B, Evans-Julian RG (2008) Impact and tensile energies of fracture in polymer–clay nanocomposites. Polymer 49:5113–5118

    Article  CAS  Google Scholar 

  16. Costa FR, Satapathy BK, Wagenknecht U, Weidisch R, Heinrich G (2006) Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocomposites. Eur Polymer J 42:2140–2152

    Article  CAS  Google Scholar 

  17. Lim SH, Dasari A, Wang GT, Yu ZZ, Mai YW, Yuan Q, Liu S, Yong MS (2010) Impact fracture behaviour of nylon 6-based ternary nanocomposites. Composites: Part B 41:67–75

    Article  Google Scholar 

  18. Yu ZZ, Ke YC, Ou YC, Hu GH (2000) Impact fracture morphology of nylon 6 toughened with a maleated polyethylene-octane elastomer. J Appl Polymer Sci 76:1285–1295

    Article  CAS  Google Scholar 

  19. Malchev PG, de Vos G, Picken SJ, Gotsis AD (2010) Mechanical and fracture properties of ternary PE/PA6/GF composites. Compos Sci Tech 70:734–742

    Article  CAS  Google Scholar 

  20. Balamurugan GP, Maiti SN (2008) The influence of reactive compatibilization on uniaxial large strain deformation and fracture behavior of polyamide 6 and poly (ethylene-co-butyl acrylate) blends. Polymer Test 27:752–764

    Article  Google Scholar 

  21. Tjong SC, Xu SA, Mai YW (2003) Impact fracture toughness of short glass fiber-reinforced polyamide 6,6 hybrid composites containing elastomer particles using essential work of fracture concept. Mater Sci Eng A 347:338–345

    Article  Google Scholar 

  22. Cotterell B, Chia JYH, Hbaieb K (2007) Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Eng Fract Mech 74:1054–1078

    Article  Google Scholar 

  23. Kayano Y, Keskkula H, Paul DR (1998) Fracture behaviour of some rubber-toughened nylon 6 blends. Polymer 39:2835–2845

    Article  CAS  Google Scholar 

  24. Lach R, Schneider K, Weidisch R, Janke A, Knoll K (2005) Application of the essential work of fracture concept to nanostructured polymer materials. Eur Polymer J 41(2):383

    Article  CAS  Google Scholar 

  25. Dayma N, Satapathy BK (2012) Microstructural correlations to micromechanical properties of PA-6/LDPE-g-MA/nanoclay ternary nanocomposites. Mater Des 33:510–522

    Article  CAS  Google Scholar 

  26. Mai YW, Powell P (1991) Essential work of fracture and J-integral measurements for ductile polymers. J Polymer Sci, Part B: Polymer Phys 29:785–793

    Article  CAS  Google Scholar 

  27. Hill RH (1952) J Mech Phys Solid 4:19

    Article  Google Scholar 

  28. Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125

    Article  CAS  Google Scholar 

  29. Hashemi S (2003) Work of fracture of high impact polystyrene (HIPS) film under plane stress conditions. J Mater Sci 38:3055–3062

    Article  CAS  Google Scholar 

  30. Bucknall CB (2000) Deformation mechanisms in rubber-toughened polymers. In: Paul DR, Bucknall CB (eds) Polymer blends, vol 2, 2nd edn. Wiley, New York, p 83

    Google Scholar 

  31. Williams JG (1984) Fracture mechanics of polymers. Halsted, New York. ISBN 0853126852

    Google Scholar 

  32. Hashemi S, Williams JG (2000) Temperature dependence of essential and non-essential work of fracture parameters for polycarbonate films. Plast Rubber Compos 29:294–302

    CAS  Google Scholar 

  33. Bureau MN, Ton-That MT, Perrin-Sarazin F (2006) Essential work of fracture and failure mechanisms of polypropylene clay-nanocomposites. Eng Fract Mech 73:2360–2374

    Article  Google Scholar 

  34. Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites. Composites: Part A 42:345–354

    Article  Google Scholar 

  35. Kim GM, Lee DH, Hoffmann B, Kressler J, Stoppelmann G (2001) Influence on nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42:1095–1100

    Article  CAS  Google Scholar 

  36. Ahmadi M, Moghbeli MR, Shokrieh MM (2012) Unsaturated polyester-based hybrid nanocomposite: fracture behavior and tensile properties. J Polymer Res 19:1–12

    Article  CAS  Google Scholar 

  37. Liu T, Tjiu WC, Tong Y, He C, Goh SS, Chung TS (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J Appl Polymer Sci 94:1236–1244

    Article  CAS  Google Scholar 

  38. Dasari A, Yu ZZ, Mai YW, Yang M (2008) The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites. J Nanosci Nanotechnol 8:1901–1912

    Article  CAS  Google Scholar 

  39. Yalcin B, Calmak M (2004) The role of plasticizer on the exfoliation and dispersion and fracture behavior of clay particles in PVC matrix: a comprehensive morphological study. Polymer 45:6623–6638

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Mr. Naresh Dayma gratefully acknowledges the Senior Research Fellowship awarded by University Grants Commission, New Delhi, India to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani K. Satapathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayma, N., Jaggi, H.S. & Satapathy, B.K. Post-yield fracture behaviour of PA-6/LDPE-g-MA/nanoclay ternary nanocomposites: semiductile-to-ductile transition. J Polym Res 19, 38 (2012). https://doi.org/10.1007/s10965-012-0038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0038-8

Keywords

Navigation