Skip to main content
Log in

Electrical properties of poly(vinyl alcohol) (PVA) based on LiFePO4 complex polymer electrolyte films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Li ion conducting polymer electrolyte films were prepared based on poly(vinyl alcohol) (PVA) with 5, 10, 15, 20, 25 and 30 wt% lithium iron phosphate (LiFePO4) salt using a solution-casting technique. X-ray diffraction (XRD) was used to determine the complexation of the polymer with LiFePO4 salt. Differential scanning (DSC) calorimetry was used to determine the melting temperatures of the pure PVA and complexed films. The maximum ionic conductivity was found to be 1.18 × 10−5 S cm−1 for (PVA:LiFePO4) (75:25) film, which increased to 3.12 × 10−5 S cm−1 upon the addition of propylene carbonate (PC) plasticizer at ambient temperature. The Li+ ion transport number was found to be 0.40 for (PVA: LiFePO4) (75:25) film using AC impedance and DC polarization methods. Dielectric studies were performed for these polymer electrolyte films in the frequency range of 10 Hz to 10 MHz at different temperatures. The activation energies of the complexed films were calculated from the dielectric loss tangent spectra and were found to be 0.35, 0.30, 0.27 and 0.28 eV. The cyclic voltammogram (CV) curves of (PVA: LiFePO4) (75:25)+PC film exhibited higher specific capacities than those for other films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Matters 4:366. doi:10.1038/nmat1368

    Article  CAS  Google Scholar 

  2. Gray F, Armand M (1999) In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, p 499

    Google Scholar 

  3. Abraham KM, Alamgir M (1990) Electrochem Soc 137:1657. doi:10.1149/1.2086749

    Article  CAS  Google Scholar 

  4. Alamgir M, Moulton RD, Abraham KM (1991) In: Abraham KM, Salomon M (eds) Primary and secondary lithium batteries. Electrochem Soc, Pennington, p 131

  5. Fan L-Z, Wang X-L, Long F, Wang X (2008) Solid State Ionics 179:1772

    Google Scholar 

  6. Abraham KM, Alamgir M (1991) Chem Mater 3:339. doi:10.1021/cm00014a027

    Article  CAS  Google Scholar 

  7. Abraham KM (1993) Chapter 3. In: Scrosati B (ed) Applications of electroactive polymers. Chapman & Hall, London

  8. Croce F, Bonino F, Panero S, Scrosati B (1989) Philos Mag B 59:161. doi:10.1080/13642818908208455

    CAS  Google Scholar 

  9. Lebrun L, Silva ED, Metayer M (2002) Appl Polym Sci 84:1572. doi:10.1002/app.10420

    Article  CAS  Google Scholar 

  10. Kim DS, Park HB, Rhim JW, Lee YM (2005) Solid State Ion 176:117. doi:10.1016/j.ssi.2004.07.011

    Article  CAS  Google Scholar 

  11. Every HA, Zhou V, Forsyth M, MacFarlane DR (1998) Electrochim Acta 43:1465. doi:10.1016/S0013-4686(97)10085-8

    Article  CAS  Google Scholar 

  12. Rajendran S, Sivakumar M, Subadevi R (2004) Solid State Ionics 167:335. doi:10.1016/j.ssi.2004.01.020

  13. Kurumova M, Lopez D, Benavente R, Mijangos C, Perena JM (2000) Polymer (Guildf) 41:9265. doi:10.1016/S0032-3861(00)00287-1

    Article  Google Scholar 

  14. Mohan VM, Raja V, Bhargav PB, Sharma AK, Narasimha Rao VVR (2007) J Polym Res 14:283. doi:10.1007/s10965-007-9108-8

    Article  CAS  Google Scholar 

  15. Shiun Liao C, Bin Ye W (2003) J Polym Res 10:241. doi:10.1023/B:JPOL.0000004619.00197.7a

    Article  Google Scholar 

  16. Mohan VM, Raja V, Sharma AK, Narasimha Rao VVR (2005) Mater Chem Phys 94:177. doi:10.1016/j.matchemphys.2005.05.030

    Article  CAS  Google Scholar 

  17. Mohamad AA, Mohamad NS, AYahya MZ, Othman R, Ramesh S, Alias Y, Arof AK (2003) Solid State Ionics 156:171. doi:10.1016/S0167-2738(02)00617-3

    Article  CAS  Google Scholar 

  18. Bhargav PB, Mohan VM, Sharma AK, Narasimha Rao VVR (2007) Int J Polym Mater 56:579. doi:10.1080/00914030600972790

    Google Scholar 

  19. Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J (2003) Mater Lett 57:1579. doi:10.1016/S0167-577X(02)01036-4

    Article  CAS  Google Scholar 

  20. Joe Hwang B, Chuan Liu Y, Chih Lin H (1997) J Polym Res 4:147. doi:10.1007/s10965-006-0019-x

    Article  Google Scholar 

  21. Sunandana CS, Sentil Kumar P (2004) Bull Mater Sci 27:1. doi:10.1007/BF02708477

    Article  CAS  Google Scholar 

  22. Tareev B (1979) Physics of dielectric materials. MIR Publications, Moscow

    Google Scholar 

  23. Ramesh S, Yahana AH, Arof AK (2002) Solid State Ionics 152–153:291. doi:10.1016/S0167-2738(02)00311-9

  24. Pillai PKC, Khurana P, Trilateral A (1986) Mater Sci Lett 5:629. doi:10.1007/BF01731531

    Article  CAS  Google Scholar 

  25. Castro WA, Zapata VH, Vargas RA, Mellander BE (2007) Electrochim Acta 53:1422. doi:10.1016/j.electacta.2007.05.066

    Article  CAS  Google Scholar 

  26. Rajendran S, Siva Kumar M, Subadevi R (2004) Mater Lett 58:641. doi:10.1016/S0167-577X(03)00585-8

    Article  CAS  Google Scholar 

  27. Evans J, Vincent CA, Bruce PG (1987) Polymer (Guildf) 28:2324. doi:10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  28. Bruce PG, Vincent CA (1987) Electroanal Chem Interf Electrochem 225:1. doi:10.1016/0022-0728(87)80001-3

    Article  CAS  Google Scholar 

  29. Panero F, Scrosati B, Sumathipala HH, Wieczorek W (2007) J Power Sources 167:510. doi:10.1016/j.jpowsour.2007.02.030

    Article  CAS  Google Scholar 

  30. Mohamed RI (2000) Phys Chem Solids 61:1357. doi:10.1016/S0022-3697(99)00390-X

    Article  CAS  Google Scholar 

  31. Yang S, Benitez R, Fuentes A, Lozano K (2007) Compos Sci Technol 67:1159. doi:10.1016/j.compscitech.2006.05.022

    Article  CAS  Google Scholar 

  32. Goswami A, Goswami AP (1973) Thin Solid Films 16:175. doi:10.1016/0040-6090(73)90166-1

    Article  CAS  Google Scholar 

  33. Rastogi RC, Chopra KL (1975) Thin Solid Films 27:311. doi:10.1016/0040-6090(75)90038-3

    Article  CAS  Google Scholar 

  34. Fan L, Dang Z, Wei G, Nan CW, Li M (2003) Mater Sci Eng B 99:340. doi:10.1016/S0921-5107(02)00487-7

    Article  Google Scholar 

  35. Girish kumar G, Munichandraiah N (2002) Electrochim Acta 47:1013

    Article  Google Scholar 

  36. Sonmez G, Schottland P, Reynolds JR (2005) Synth Metals 155:130. doi:10.1016/j.synthmet.2005.07.335

Download references

Acknowledgements

One of the authors (V.M. Mohan) wishes to thank Wuhan University of Technology Management for its financial support in the form of a postdoctoral fellowship, which enabled the above work to be carried out. This work is supported by the Chinese Postdoctoral Science Foundation (CPSF; No; 20080440966), the National Nature Science Foundation of China (no. 50672071), and the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education, China (PCSIRT) (No. IRT0547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, V.M., Qiu, W., Shen, J. et al. Electrical properties of poly(vinyl alcohol) (PVA) based on LiFePO4 complex polymer electrolyte films. J Polym Res 17, 143–150 (2010). https://doi.org/10.1007/s10965-009-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9300-0

Keywords

Navigation