Skip to main content
Log in

Preparation, Characterization and H2O2 Selectivity of Hyperbranched Polyimides Containing Triazine

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel polyimides based on aromatic dianhyride and various hexahydrotriazine monomers were synthesized via two-stage solution polycondensation method. The resulting polyimides were characterized by solubility, viscosity, density, spectroscopic and thermal analysis methods. The results showed that polyimides soluble in polar solvents and had inherent viscosities ranging from 1.92 to 2.32 dL/g. The glass transition temperatures were 315 and 344 C, and the 10% weight loss temperatures were above 604 and 628 C. Then, polyimide-modified electrodes were prepared for the selective determination of hydrogen peroxide. The electrochemical behavior of the resulting polyimide film electrodes to the electroactive and non-electroactive species such as ascorbic acid, oxalic acid, hydrogen peroxide, lactose, sucrose and urea was examined by CV, DPV and TB techniques. From the obtained findings, it was shown that polyimide-coated electrode (PI-2) was only permitted to hydrogen peroxide among the species examined. As a result, it is claimed that polyimide electrode could be used as a selective membrane for hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Yang, S. Mu and H. Chen, Synth. Met., 92, 173 (1998).

    Article  Google Scholar 

  2. G. Aydın, S. S. Çelebi, H. Özyörük and A. Yıldız, Sensors and Actuators B, 87, 8 (2002).

    Article  Google Scholar 

  3. N. C. Foulds and C. R. Lowe, J. Chem. Soc., 82, 1259 (1986).

    Google Scholar 

  4. G. Fortier, E. Brassard and D. Belanger, Biosens. Bioelectron, 5, 473 (1990).

    Article  PubMed  Google Scholar 

  5. G. Fortier, E. Brassard and D. Belanger, Biotechnol. Tech., 2, 177 (1988).

    Article  Google Scholar 

  6. E. Ekinci, Polym. Bull., 42, 693 (1999).

    Article  Google Scholar 

  7. P. C. Pandey, J. Chem. Soc., 84, 2259 (1988).

    Google Scholar 

  8. S. Brahim, D. Narinesingh and A. Guiseppi-Elli, Biosens. Bioelectron., 17, 53 (2002).

    Article  PubMed  Google Scholar 

  9. E. Dempsey and J. Wang, Talanta, 40, 445 (1993).

    Article  Google Scholar 

  10. E. Ekinci, M. Özden, M. H. Türkdemir and A. E. Karagözler, J. Appl. Polym. Sci., 70, 2227 (1998).

    Article  Google Scholar 

  11. M. Özden, E. Ekinci and A. E. Karagözler, J. Solid State Electrochem., 2, 427 (1998).

    Article  Google Scholar 

  12. M. Özden, E. Ekinci and A. E. Karagözler, J. Appl. Polym. Sci., 71, 2141 (1999).

    Article  Google Scholar 

  13. Y. Liu, M. L. Chng, T.-S. Chung and R. Wang, J. Membr. Sci., 214, 83 (2003).

    Article  Google Scholar 

  14. H. Kawakami, K. Nakajima, H. Shimizu and S. Nagaoka, J. Membr. Sci., 212, 195 (2003).

    Article  Google Scholar 

  15. G. C. Davis, B. A. Weath and G. Gildenblat, in Polyimides: Synthesis, Characterization and Applications, K. L. Mittal, Ed., Vol. 2, Plenum Press, New York, 1984, p. 847.

    Google Scholar 

  16. N. Adrova, M. Bessonov, L. A. Laius and A. P. Rudakov, Polyimides: A New Class of Heat-Resistant Polymers, IPST Press, Jerusalem, 1969.

    Google Scholar 

  17. J. Fang, H. Kita and K.-I. Okamoto, Macromolecules, 33, 4639 (2000).

    Article  Google Scholar 

  18. Q. L. Xiang, J. Mitsutoshi and K. Masa, Macromolecules, 34(10), 3146 (2001).

    Article  Google Scholar 

  19. T. L. Mong and S. F. Gregory, Langmuir, 17(3), 762 (2001).

    Article  Google Scholar 

  20. Q. L. Xiang, K. Liu, Y. Kazuhiro, J. Mitsutoshi and K. Masa, Chem. Mater., 12(12), 3885 (2000).

    Article  Google Scholar 

  21. L. T. Horng, M. L. Chyi and H. W. Kung, Chem. Mater., 13(1), 222 (2001).

    Article  Google Scholar 

  22. K. Toshikazu, Chem. Mater., 9(6), 1362 (1997).

    Article  Google Scholar 

  23. M. Shigeharu, Ind. & Eng. Chem. Res., 36(6), 2134 (1997).

    Google Scholar 

  24. N. Almeria, Macromolecules, 32(10), 3171 (1999).

    Article  Google Scholar 

  25. T. Seçkin, S. Köytepe, İ. Özdemir and B. Çetinkaya, J. Inorg. Org. Polym., 13, 9 (2003).

    Article  Google Scholar 

  26. T. Seçkin, S. Köytepe, B. Çetinkaya and İ. Ozdemir, Des. Mono. Polymers, 6, 175 (2003).

    Article  Google Scholar 

  27. T. Seçkin, E. Çetinkaya, S. Köytepe and B. Yiğit, Polym. Bull., 50, 139 (2003).

    Article  Google Scholar 

  28. T. Seçkin, S. Köytepe, B. Çetinkaya and İ. Özdemir, J. Mol. Cat. A: Chem., 179, 263 (2002).

    Article  Google Scholar 

  29. C. Gao and D. Yan, Prog. Polym. Sci., 29, 183 (2004).

    Article  Google Scholar 

  30. E. Gileadi, E. Kirowa-Eisner and J. Penciner, in Interfacial Electrochemistry. An Experimental Approach, Addison-Wesley, Reading, 1975, p. 311.

    Google Scholar 

  31. A. Paşahan, S. Köytepe, E. Ekinci and T. Seçkin, Polym. Bull., 51, 351 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Seçkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekinci, E., Emre, F.B., Köytepe, S. et al. Preparation, Characterization and H2O2 Selectivity of Hyperbranched Polyimides Containing Triazine. J Polym Res 12, 205–210 (2005). https://doi.org/10.1007/s10965-004-1869-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-004-1869-8

Keywords

Navigation