Skip to main content
Log in

An Interlacing Technique for Spectra of Random Walks and Its Application to Finite Percolation Clusters

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A comparison technique for random walks on finite graphs is introduced, using the well-known interlacing method. It yields improved return probability bounds. A key feature is the incorporation of parts of the spectrum of the transition matrix other than just the principal eigenvalue. As an application, an upper bound of the expected return probability of a random walk with symmetric transition probabilities is found. In this case, the state space is a random partial graph of a regular graph of bounded geometry and transitive automorphism group. The law of the random edge-set is assumed to be invariant with respect to some transitive subgroup of the automorphism group (‘invariant percolation’). Given that this subgroup is unimodular, it is shown that this invariance strengthens the upper bound of the expected return probability, compared with standard bounds such as those derived from the Cheeger inequality. The improvement is monotone in the degree of the underlying transitive graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. CMP 108, 489–526 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Antunović, T., Veselić, I.: Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs. J. Stat. Phys. 130(5), 983–1009 (2007)

    Article  Google Scholar 

  4. Antunović, T., Veselić, I.: Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. In: Proceedings of OTAMP 2006. Operator Theory: Adv. Appl. (2007)

  5. Barlow, M.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartholdi, L., Woess, W.: Spectral computations on lamplighter groups and Diestel–Leader graphs. J. Fourier Anal. Appl. 11(2), 175–202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benjamini, I., Mossel, E.: On the mixing time of simple random walk on the super critical percolation cluster. Probab. Theory Relat. Fields 125(3), 408–420 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Group-invariant percolation on graphs. Geom. Funct. Anal. 9, 29–66 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Critical percolation on any nonamenable group has no infinite clusters. Ann. Probab. 27(3), 1347–1356 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bollobás, B., Nikiforov, V.: Graphs and Hermitian matrices: eigenvalue interlacing. Discrete Math. 289(1–3), 119–127 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brown, M.: Interlacing eigenvalues in time reversible Markov chains. Math. Oper. Res. 24(4) (1999)

  12. Chen, G., Davis, G., Hall, F., Li, Z., Patel, K., Stewart, M.: An interlacing result on normalized Laplacians. SIAM J. Discrete Math. 18(2), 353–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, D., Peres, Y., Pete, G.: Anchored expansion, percolation and speed. Ann. Probab. 32(4), 2978–2995 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chung, F.R.K.: Spectral graph theory. CBMS, Am. Soc. Math. Sci. 92 (1997)

  15. Chung, F.R.K., Langlands, R.P.: Combinatorial Laplacian with vertex weights. J. Comb. Theory, Ser. A 75, 316–327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chung, F.R.K., Yau, S.-T.: Eigenvalues of graphs and Sobolev inequalities. Comb. Probab. Comput. 4, 11–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chung, F.R.K., Grigor’yan, A., Yau, S.-T.: Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Commun. Anal. Geom. 8(5), 969–1026 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Verlag der Wissenschaften, Berlin (1982)

    Google Scholar 

  19. de Abreu, N.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fan, Y.: A new proof of Fiedler’s inequality on the algebraic connectivity of trees. J. Math. Study 36(4), 379–383 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. I, p. 436. Wiley, New York (1968)

    MATH  Google Scholar 

  23. Fontès, L.R.G., Mathieu, P.: On symmetric random walks with random conductances. Probab. Theory Relat. Fields 134(4), 565–602 (2006)

    Article  MATH  Google Scholar 

  24. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Berlin (2001). Chap. 9

    MATH  Google Scholar 

  25. Grimmet, G.R.: On the number of clusters in the percolation model. J. Lond. Math. Soc. (2) 13, 346–350 (1976)

    Article  Google Scholar 

  26. Grimmet, G.R.: Percolation, vol. 132. Springer, Berlin (2000). Chap. 4

    Google Scholar 

  27. Guo, J.: Bounds on the kth eigenvalues of trees and forests. Linear Algebra Appl. 149, 19–34 (1991)

    Article  MathSciNet  Google Scholar 

  28. Guo, J.: The kth Laplacian eigenvalue of a tree. J. Graph Theor. 54(1), 51–57 (2007)

    Article  MATH  Google Scholar 

  29. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226/228, 593–616 (1995)

    Article  MathSciNet  Google Scholar 

  30. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  MATH  Google Scholar 

  31. Heicklen, D., Hoffman, C.: Return times for simple random walks on percolation clusters. Electron. J. Probab. 10(8), 250–320 (2005)

    MathSciNet  Google Scholar 

  32. Horn, R., Johnson, Ch.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985)

    MATH  Google Scholar 

  33. Hua, L.-K.: Applications of mathematical models to wheat harvesting. Acta Math. Sin. 11(1), 63–75 (1961)

    Google Scholar 

  34. Kesten, H.: Scaling relations for 2D-percolation. CMP 109, 109–156 (1987)

    MATH  MathSciNet  Google Scholar 

  35. Kirsch, W., Müller, P.: Spectral properties of the Laplacian on bond-percolative graphs. Math. Z. 252, 899–916 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Krasovsky, I., Peresada, V.I.: Principles of finite-dimensional perturbation theory. Low Temp. Phys. 23(1), 1 (1997)

    Article  Google Scholar 

  37. Lancaster, P.: Theory of Matrices. Academic Press, New York (1969) (Chap. 8.4, Theorem 1)

    MATH  Google Scholar 

  38. Lawler, G.F., Sokal, A.D.: Bounds on the L 2-spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309(2), 557–580 (1988)

    MATH  MathSciNet  Google Scholar 

  39. Lenz, D., Müller, P., Veselić, I.: Uniform existence of the integrated density of states for models on ℤd. Positivity 12, 571–589 (2008). math-ph/0607063

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, C.-K.: A short proof of interlacing inequalities on normalized Laplacians. Linear Algebra Appl 414, 425–427 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press (in preparation). Current version available at http://mypage.iu.edu/~rdlyons/

  42. Mathieu, P., Remy, E.: Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32(1A), 100–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Revelle, D.: Heat kernel asymptotics on the lamplighter group. Electron. Commun. Probab. 8, 142–154 (2003)

    MATH  MathSciNet  Google Scholar 

  44. Saloff-Coste, L.: Lectures on Finite Markov Chains. LNM, vol. 1665. Saint-Flour (1997)

  45. Schonman, R.: Stability of infinite clusters in supercritical percolation. Probab. Theory Relat. Fields 113, 287–300 (1999)

    Article  Google Scholar 

  46. Simon, B.: Lifshitz tails for the Anderson model. J. Stat. Phys. 38(1/2) (1985)

  47. Soardi, P., Woess, W.: Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z. 205, 471–486 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  48. van den Heuvel, J.: Hamiltonian cycles and eigenvalues of graphs. Linear Algebra Appl. 226/228, 723–730 (1995)

    Article  Google Scholar 

  49. West, D.B.: Introduction to Graph Theory. Prentice-Hall, New York (1996)

    MATH  Google Scholar 

  50. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Sobieczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobieczky, F. An Interlacing Technique for Spectra of Random Walks and Its Application to Finite Percolation Clusters. J Theor Probab 23, 639–670 (2010). https://doi.org/10.1007/s10959-010-0298-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0298-3

Keywords

Mathematics Subject Classification (2000)

Navigation