Skip to main content
Log in

Coupling for τ-Dependent Sequences and Applications

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X be a real-valued random variable and \(M\) a σ-algebra. We show that the minimum \({\mathbb{L}}^1\)-distance between X and a random variable distributed as X and independant of \(M\) can be viewed as a dependence coefficient τ(\(M\),X) whose definition is comparable (but different) to that of the usual β-mixing coefficient between \(M\) and σ(X). We compare this new coefficient to other well known measures of dependence, and we show that it can be easily computed in various situations, such as causal Bernoulli shifts or stable Markov chains defined via iterative random maps. Next, we use coupling techniques to obtain Bennett and Rosenthal-type inequalities for partial sums of τ-dependent sequences. The former is used to prove a strong invariance principle for partial sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andrews, D. W. K. (1984). Nonstrong mixing autoregressive processes. J.Appl.Probab. 21, 930–934.

    Google Scholar 

  2. Berbee, H. C. P. (1979). Random walks with stationary increments and renewal theory. Math.Cent.Tracts. Amsterdam.

  3. Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.

    Google Scholar 

  4. Billingsley, P. (1995). Probability and Measure, 3rd ed., Wiley, New York.

    Google Scholar 

  5. Bosq, D. (1993). Bernstein 's type large deviation inequalities for partial sums of strong mixing process. Statistics 24, 59–70.

    Google Scholar 

  6. Bradley, R. C. (1983). Approximations theorems for strongly mixing random variables. Michigan Math.J. 30, 69–81.

    Google Scholar 

  7. Bradley, R. C. (2002). Introduction to Strong Mixing Conditions, Vol 1. Technical Report, Department of Mathematics, I. U. Bloomington.

    Google Scholar 

  8. Broise, A. (1996). Transformations dilatantes de 1 'intervalle et th ´eorèmes limites. ´Etudes spectrales d 'op ´erateurs de transfert et applications. Ast ´erisque 238, 1–109.

    Google Scholar 

  9. Bryc, W. (1982). On the approximation theorem of Berkes and Philipp, Demonstratio Mathematica 15, 807–816.

    Google Scholar 

  10. Coulon-Prieur, C., and Doukhan, P. (2000). A triangular CLT for weakly dependent sequences. Statist.Probab.Lett. 47, 61–68.

    Google Scholar 

  11. Dedecker, J., and Doukhan, P. (2002). A new covariance inequality and applications, Stochastic Process.Appl. 106, 63–80.

    Google Scholar 

  12. Dedecker, J., and Rio, E. (2000). On the functional central limit theorem for stationary processes. Ann.Inst.H.Poincar ´e Probab.Statist. 36, 1–34.

  13. Dehling, H., and Philipp, W. (1982). Almost sure invariance principles for weakly dependent vector-valued random variables, Ann.Probab. 10, 689–701.

    Google Scholar 

  14. Doukhan, P. (1994). Mixing:properties and examples. Lecture Notes in Statist. 85, Springer-Verlag.

  15. Doukhan, P., and Louhichi, S. (1999). A new weak dependence condition and applications to moment inequalities. Stochastic Process.Appl. 84, 313–342.

    Google Scholar 

  16. Doukhan, P., Massart P., and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann.Inst.H.Poincar ´e Probab.Statist. 30, 63–82.

    Google Scholar 

  17. Dudley, R. M., (1989). Real analysis and probability. Wadworsth Inc., Belmont, California.

    Google Scholar 

  18. Fuk, D. K., and Nagaev, S. V. (1971). Probability inequalities for sums of independent random variables. Theory Probab.Appl. 16, 643–660.

    Google Scholar 

  19. Goldstein, S. (1979). Maximal coupling. Z.Wahrsch.Verw.Gebiete 46, 193–204.

    Google Scholar 

  20. Gordin, M. I. (1969). The central limit theorem for stationary processes. Dokl.Akad.Nauk SSSR 188, 739–741.

    Google Scholar 

  21. Gordin, M. I. (1973). Abstracts of Communication, T. 1:A-K, International Conference on Probability Theory, Vilnius.

  22. Heyde, C. C., and Scott, D. J. (1973). Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments. Ann.Probab. 1, 428–436.

    Google Scholar 

  23. Heyde, C. C. (1975). On the central limit theorem and iterated logarithm law for stationary processes. Bull.Austral.Math.Soc. 12, 1–8.

    Google Scholar 

  24. Major, P. (1978). On the invariance principle for sums of identically distributed random variables. J.Multivariate Anal. 8, 487–517.

    Google Scholar 

  25. Merlevède, F., and Peligrad, M. (2002). On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. 171–193. Birkh ¨auser.

  26. McShane, E. J. (1947). Integration. Princeton university press, London.

    Google Scholar 

  27. Oodaira, H., and Yoshihara, K. I. (1971). Note on the law of the iterated logarithm for stationary processes satisfying mixing conditions. Kodai Math.Sem.Rep. 23, 335–342.

    Google Scholar 

  28. Peligrad, M. (2001). A note on the uniform laws for dependent processes via coupling. J.Theoret.Probab. 14, 979–988.

    Google Scholar 

  29. Peligrad, M. (2002). Some remarks on coupling of dependent random variables. Stat.Prob.Letters 60, 201–209.

    Google Scholar 

  30. Philipp, W. (1986). Invariance principles for independent and weakly dependent random variables. Dependence in probability and statistics (Oberwolfach,1985), 225–268. Prog. Probab. Statist.11, Birkh ¨auser, Boston.

  31. Rio, E. (1995). The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann.Probab. 23, 1188–1203.

    Google Scholar 

  32. Rio, E. (2000). Th ´eorie asymptotique des processus al ´eatoires faiblement d ´ependants. Collection Math ´ematiques & Applications 31. Springer, Berlin.

    Google Scholar 

  33. Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition, Proc.Nat.Acad.Sci.U.S.A. 42, 43–47.

    Google Scholar 

  34. Shao, Q-. M. (1993). Almost sure invariance principle for mixing sequences of random variables. Stochastic Process.Appl. 48, 319–334.

    Google Scholar 

  35. Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z.Wahrsch.Verw.Gebiete 3, 211–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedecker, J., Prieur, C. Coupling for τ-Dependent Sequences and Applications. Journal of Theoretical Probability 17, 861–885 (2004). https://doi.org/10.1007/s10959-004-0578-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-004-0578-x

Navigation