Skip to main content
Log in

Fixed Points and Completeness in Metric and Generalized Metric Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The famous Banach contraction principle holds in complete metric spaces, but completeness is not a necessary condition: there are incomplete metric spaces on which every contraction has a fixed point. The aim of this paper is to present various circumstances in which fixed point results imply completeness. For metric spaces, this is the case of Ekeland’s variational principle and of its equivalent, Caristi’s fixed point theorem. Other fixed point results having this property will also be presented in metric spaces, in quasi-metric spaces, and in partial metric spaces. A discussion on topology and order and on fixed points in ordered structures and their completeness properties is included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Abdeljawad, E. Karapınar, and K. Taş, “Existence and uniqueness of a common fixed point on partial metric spaces,” Appl. Math. Lett., 24, No. 11, 1900–1904 (2011).

    MathSciNet  MATH  Google Scholar 

  2. S. Abramsky and A. Jung, “Domain theory,” in: Handbook of Logic in Computer Science, Vol. 3, Oxford Univ. Press, New York (1994), pp. 1–168.

    Google Scholar 

  3. Ö. Acar, I. Altun, and S. Romaguera, “Caristi’s type mappings on complete partial metric spaces,” Fixed Point Theory, 14, No. 1, 3–9 (2013).

    MathSciNet  MATH  Google Scholar 

  4. A. Aghajani and A. Razani, “Some completeness theorems in the Menger probabilistic metric space,” Appl. Sci., 10, 1–8 (2008).

    MathSciNet  MATH  Google Scholar 

  5. C. Alegre, J. Marín, and S. Romaguera, “A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces,” Fixed Point Theory Appl., 40 (2014).

  6. M. A. Alghamdi, N. Shahzad, and O. Valero, “On fixed point theory in partial metric spaces,” Fixed Point Theory Appl., 175 (2012).

  7. M. A. Alghamdi, N. Shahzad, and O. Valero, “New results on the Baire partial quasi-metric space, fixed point theory and asymptotic complexity analysis for recursive programs,” Fixed Point Theory Appl., 14 (2014).

  8. M. Alimohammady, A. Esmaeli, and R. Saadati, “Completeness results in probabilistic metric spaces,” Chaos Solitons Fractals, 39, No. 2, 765–769 (2009).

  9. T. Alsiary and A. Latif, “Generalized Caristi fixed point results in partial metric spaces,” J. Nonlinear Convex Anal., 16, No. 1, 119–125 (2015).

    MathSciNet  MATH  Google Scholar 

  10. I. Altun and S. Romaguera, “Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point,” Appl. Anal. Discrete Math., 6, No. 2, 247–256 (2012).

    MathSciNet  MATH  Google Scholar 

  11. P. Amato, “A method for reducing fixed-point problems to completeness problems and vice versa,” Boll. Un. Mat. Ital. B (6), 3, No. 2, 463–476 (1984).

  12. P. Amato, “The completion classes of a metric space,” Rend. Circ. Mat. Palermo (2) Suppl., No. 12, 157–168 (1986).

  13. P. Amato, “Some properties of completion classes for normed spaces,” Note Mat., 13, No. 1, 123–134 (1993).

    MathSciNet  MATH  Google Scholar 

  14. A. Amini-Harandi, “Metric-like spaces, partial metric spaces and fixed points,” Fixed Point Theory Appl., 204 (2012).

  15. V. G. Angelov, “Fixed point theorem in uniform spaces and applications,” Czech. Math. J., 37 (112), No. 1, 19–33 (1987).

  16. V. G. Angelov, “A converse to a contraction mapping theorem in uniform spaces,” Nonlinear Anal., 12, No. 10, 989–996 (1988).

    MathSciNet  MATH  Google Scholar 

  17. V. G. Angelov, “Corrigendum: ‘A converse to a contraction mapping theorem in uniform spaces’ [Nonlinear Anal. 12, No. 10, 989–996 (1988); MR0962764 (89k:54101)],” Nonlinear Anal., 23, No. 11, 1491 (1994).

  18. V. G. Angelov, “An extension of Kirk–Caristi theorem to uniform spaces,” Antarct. J. Math., 1, No. 1, 47–51 (2004).

  19. M.-C. Anisiu and V. Anisiu, “On the characterization of partial metric spaces and quasimetrics,” Fixed Point Theory, 17, No. 1 (2016).

  20. Q. H. Ansari and L.-J. Lin, “Ekeland-type variational principles and equilibrium problems,” Topics in Nonconvex Optimization, Springer Optim. Appl., Vol. 50, Springer, New York (2011), pp. 147–174.

  21. H. Aydi, E. Karapınar, and P. Kumam, “A note on modified proof of Caristi’s fixed point theorem on partial metric spaces,” J. Inequal. Appl., 355 (2013).

  22. H. Aydi, E. Karapınar, and C. Vetro, “On Ekeland’s variational principle in partial metric spaces,” Appl. Math. Inform. Sci., 9, No. 1, 257–262 (2015).

    MathSciNet  Google Scholar 

  23. A. C. Babu, “A converse to a generalized Banach contraction principle,” Publ. Inst. Math. (Beograd) (N.S.), 32 (46), 5–6 (1982).

  24. S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fund. Math., 3, 133–181 (1922).

    MathSciNet  MATH  Google Scholar 

  25. T. Q. Bao, S. Cobzaş, and A. Soubeyran, Variational Principles and Completeness in Pseudo-Quasimetric Spaces, Preprint (2016).

  26. T. Q. Bao, B. S. Mordukhovich, and A. Soubeyran, “Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality,” Set-Valued Var. Anal., 23, No. 2, 375–398 (2015).

    MathSciNet  MATH  Google Scholar 

  27. T. Q. Bao, B. S. Mordukhovich, and A. Soubeyran, “Variational analysis in psychological modeling,” J. Optim. Theory Appl., 164, No. 1, 290–315 (2015).

    MathSciNet  MATH  Google Scholar 

  28. T. Q. Bao and A. Soubeyran, Variational Analysis and Applications to Group Dynamics, Preprint (2015), http://www.optimization-online.org.

  29. T. Q. Bao and M. A. Théra, “On extended versions of Dancs–Hegedüs–Medvegyev’s fixed-point theorem,” Optimization (2015).

  30. V. Berinde and M. Choban, “Remarks on some completeness conditions involved in several common fixed point theorems,” Creat. Math. Inform., 19, No. 1, 1–10 (2010).

    MathSciNet  MATH  Google Scholar 

  31. V. Berinde and M. Choban, “Generalized distances and their associate metrics. Impact on fixed point theory,” Creat. Math. Inform., 22, No. 1, 23–32 (2013).

    MathSciNet  MATH  Google Scholar 

  32. C. Bessaga, “On the converse of the Banach ‘fixed-point principle’,” Colloq. Math., 7, 41–43 (1959).

  33. F. Blanqui, “A point on fixpoints in posets,” arXiv:1502.06021 [math.LO] (2014).

  34. J. M. Borwein, “Completeness and the contraction principle,” Proc. Am. Math. Soc., 87, No. 2, 246–250 (1983).

    MathSciNet  MATH  Google Scholar 

  35. N. Bourbaki, “Sur le théorème de Zorn,” Arch. Math. (Basel), 2, 434–437 (1951).

  36. A. Branciari, “A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces,” Publ. Math. Debrecen, 57, No. 1-2, 31–37 (2000).

    MathSciNet  MATH  Google Scholar 

  37. M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, “Partial metric spaces,” Am. Math. Mon., 116, No. 8, 708–718 (2009).

    MathSciNet  MATH  Google Scholar 

  38. C.-S. Chuang, L.-J. Lin, and W. Takahashi, “Fixed point theorems for single-valued and set-valued mappings on complete metric spaces,” J. Nonlinear Convex Anal., 13, No. 3, 515–527 (2012).

    MathSciNet  MATH  Google Scholar 

  39. S. Cobzaş, “Completeness in quasi-metric spaces and Ekeland Variational Principle,” Topol. Appl., 158, No. 8, 1073–1084 (2011).

    MathSciNet  MATH  Google Scholar 

  40. S. Cobzaş, “Ekeland variational principle in asymmetric locally convex spaces,” Topol. Appl., 159, No. 10-11, 2558–2569 (2012).

    MathSciNet  MATH  Google Scholar 

  41. S. Cobzaş, “Functional analysis in asymmetric normed spaces,” in: Frontiers in Mathematics, Birkhäuser; Springer, Basel (2013).

  42. E. H. Connell, “Properties of fixed point spaces,” Proc. Am. Math. Soc., 10, 974–979 (1959).

    MathSciNet  MATH  Google Scholar 

  43. S. Dancs, M. Hegedűs, and P. Medvegyev, “A general ordering and fixed-point principle in complete metric space,” Acta Sci. Math. (Szeged), 46, No. 1-4, 381–388 (1983).

  44. A. C. Davis, “A characterization of complete lattices,” Pacific J. Math., 5, 311–319 (1955).

    MathSciNet  MATH  Google Scholar 

  45. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985).

    MATH  Google Scholar 

  46. M. M. Deza and E. Deza, Encyclopedia of Distances, Springer, Heidelberg (2014).

    MATH  Google Scholar 

  47. S. Dhompongsa, W. Inthakon, and A. Kaewkhao, “Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings,” J. Math. Anal. Appl., 350, No. 1, 12–17 (2009).

    MathSciNet  MATH  Google Scholar 

  48. S. Dhompongsa and A. Kaewcharoen, “Fixed point theorems for nonexpansive mappings and Suzuki-generalized nonexpansive mappings on a Banach lattice,” Nonlinear Anal., 71, No. 11, 5344–5353 (2009).

    MathSciNet  MATH  Google Scholar 

  49. S. Dhompongsa and H. Yingtaweesittikul, “Fixed points for multivalued mappings and the metric completeness,” Fixed Point Theory Appl., 972395 (2009).

  50. M. Edelstein, “An extension of Banach’s contraction principle,” Proc. Am. Math. Soc., 12, 7–10 (1961).

    MathSciNet  MATH  Google Scholar 

  51. M. Edelstein, “On fixed and periodic points under contractive mappings,” J. London Math. Soc., 37, 74–79 (1962).

    MathSciNet  MATH  Google Scholar 

  52. M. Edelstein, “A theorem on fixed points under isometries,” Am. Math. Mon., 70, 298–300 (1963).

    MathSciNet  MATH  Google Scholar 

  53. M. Edelstein, “A short proof of a theorem of L. Janos,” Proc. Am. Math. Soc., 20, 509–510 (1969).

    MathSciNet  MATH  Google Scholar 

  54. M. Elekes, “On a converse to Banach’s fixed point theorem,” Proc. Am. Math. Soc., 137, No. 9, 3139–3146 (2009).

    MathSciNet  MATH  Google Scholar 

  55. O. Frink, “Topology in lattices,” Trans. Am. Math. Soc., 51, 569–582 (1942).

    MathSciNet  MATH  Google Scholar 

  56. J. García-Falset, E. Llorens-Fuster, and T. Suzuki, “Fixed point theory for a class of generalized nonexpansive mappings,” J. Math. Anal. Appl., 375, No. 1, 185–195 (2011).

    MathSciNet  MATH  Google Scholar 

  57. P. G. Georgiev, “The strong Ekeland variational principle, the strong drop theorem and applications,” J. Math. Anal. Appl., 131, No. 1, 1–21 (1988).

    MathSciNet  MATH  Google Scholar 

  58. P. Ghosh and A. Deb Ray, “A characterization of completeness of generalized metric spaces using generalized Banach contraction principle,” Demonstratio Math., 45, No. 3, 717–724 (2012).

    MathSciNet  MATH  Google Scholar 

  59. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous Lattices and Domains, Encycl. Math. Its Appl., Vol. 93, Cambridge Univ. Press, Cambridge (2003).

  60. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., Vol. 28, Cambridge Univ. Press, Cambridge (1990).

  61. J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, New Math. Monogr., Vol. 22, Cambridge University Press, Cambridge (2013).

  62. M. Grabiec, Y. J. Cho, and R. Saadati, “Completeness and fixed points in probabilistic quasi-pseudo-metric spaces,” Bull. Stat. Econ., 2, No. A08, 39–47 (2008).

  63. A. Granas and J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer, New York (2003).

  64. R. H. Haghi, Sh. Rezapour, and N. Shahzad, “Be careful on partial metric fixed point results,” Topol. Appl., 160, No. 3, 450–454 (2013).

    MathSciNet  MATH  Google Scholar 

  65. P. Hitzler and A. K. Seda, “Dislocated topologies,” J. Electr. Eng., 51, No. 12/s, 3–7 (2000).

  66. P. Hitzler and A. K. Seda, “A ‘converse’ of the Banach contraction mapping theorem,” J. Electr. Eng., 52, No. 10/s, 3–6 (2001).

  67. P. Hitzler and A. K. Seda, “The fixed-point theorems of Priess-Crampe and Ribenboim in logic programming,” in: Valuation Theory and Its Applications, Vol. I (Saskatoon, SK, 1999 ), Fields Inst. Commun., Vol. 32, Amer. Math. Soc., Providence (2002), pp. 219–235.

  68. S. B. Hosseini and R. Saadati, “Completeness results in probabilistic metric spaces, I,” Commun. Appl. Anal., 9, No. 3-4, 549–553 (2005).

    MathSciNet  MATH  Google Scholar 

  69. P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr., Vol. 59, Amer. Math. Soc., Providence (1998).

  70. T. K. Hu, “On a fixed-point theorem for metric spaces,” Am. Math. Mon., 74, 436–437 (1967).

    MATH  Google Scholar 

  71. H. Huang, “Global weak sharp minima and completeness of metric space,” Acta Math. Sci. Ser. B Engl. Ed., 25, No. 2, 359–366 (2005).

    MathSciNet  MATH  Google Scholar 

  72. S. Iemoto, W. Takahashi, and H. Yingtaweesittikul, “Nonlinear operators, fixed points and completeness of metric spaces,” in: Fixed Point Theory and Its Applications, Yokohama Publ., Yokohama (2010), pp. 93–101.

  73. A. A. Ivanov, “Fixed points of mappings of metric spaces,” in: Studies in Topology, II, Zap. Naučn. Sem. Leningr. Otdel. Mat. Inst. Steklov. (LOMI), 66, 5–102 (1976).

  74. J. Jachymski, “An iff fixed point criterion for continuous self-mappings on a complete metric space,” Aequationes Math., 48, No. 2-3, 163–170 (1994).

    MathSciNet  MATH  Google Scholar 

  75. J. Jachymski, “Some consequences of fundamental ordering principles in metric fixed point theory,” Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny), Ann. Univ. Mariae Curie-Skłodowska Sect. A, 51, No. 2, 123–134 (1997),

  76. J. Jachymski, “Fixed point theorems in metric and uniform spaces via the Knaster–Tarski principle,” Nonlinear Anal., 32, No. 2, 225–233 (1998).

    MathSciNet  Google Scholar 

  77. J. Jachymski, “Some consequences of the Tarski–Kantorovitch ordering theorem in metric fixed point theory,” Quaestiones Math., 21, No. 1-2, 89–99 (1998).

    MathSciNet  MATH  Google Scholar 

  78. J. Jachymski, “A short proof of the converse to the contraction principle and some related results,” Topol. Methods Nonlinear Anal., 15, No. 1, 179–186 (2000).

    MathSciNet  MATH  Google Scholar 

  79. J. Jachymski, “Order-theoretic aspects of metric fixed point theory,” in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht (2001), pp. 613–641.

  80. J. Jachymski, “Converses to fixed point theorems of Zermelo and Caristi,” Nonlinear Anal., 52, No. 5, 1455–1463 (2003).

    MathSciNet  MATH  Google Scholar 

  81. J. Jachymski, “Equivalent conditions for generalized contractions on (ordered) metric spaces,” Nonlinear Anal., 74, No. 3, 768–774 (2011).

    MathSciNet  MATH  Google Scholar 

  82. J. Jachymski, “A stationary point theorem characterizing metric completeness,” Appl. Math. Lett., 24, No. 2, 169–171 (2011).

    MathSciNet  MATH  Google Scholar 

  83. S. Janković, Z. Kadelburg, and S. Radenović, “On cone metric spaces: a survey,” Nonlinear Anal., 74, No. 7, 2591–2601 (2011).

    MathSciNet  MATH  Google Scholar 

  84. L. Janoš, “A converse of Banach’s contraction theorem,” Proc. Am. Math. Soc., 18, 287–289 (1967).

    MathSciNet  MATH  Google Scholar 

  85. L. Janoš, “A converse of the generalized Banach’s contraction theorem,” Arch. Math. (Basel), 21, 69–71 (1970).

  86. G.-J. Jiang, “On characterization of metric completeness,” Turk. J. Math., 24, No. 3, 267–272 (2000).

    MathSciNet  MATH  Google Scholar 

  87. O. Kada, T. Suzuki, and W. Takahashi, “Nonconvex minimization theorems and fixed point theorems in complete metric spaces,” Math. Japon., 44, No. 2, 381–391 (1996).

    MathSciNet  MATH  Google Scholar 

  88. E. Karapinar, “Generalizations of Caristi Kirk’s theorem on partial metric spaces,” Fixed Point Theory Appl., 4 (2011).

  89. E. Karapınar and S. Romaguera, “On the weak form of Ekeland’s variational principle in quasimetric spaces,” Topol. Appl., 184, 54–60 (2015).

    MATH  Google Scholar 

  90. E. Karapınar and P. Salimi, “Dislocated metric space to metric spaces with some fixed point theorems,” Fixed Point Theory Appl., 222 (2013).

  91. S. Kasahara, “Classroom notes: A remark on the converse of Banach’s Contraction Theorem,” Am. Math. Mon., 75, No. 7, 775–776 (1968).

    MathSciNet  MATH  Google Scholar 

  92. K. Keimel, “Topological cones: functional analysis in a T0-setting,” Semigroup Forum, 77, No. 1, 109–142 (2008).

    MathSciNet  MATH  Google Scholar 

  93. K. Keimel, “Weak topologies and compactness in asymmetric functional analysis,” Topol. Appl., 185/186, 1–22 (2015).

  94. J. L. Kelley, General topology, Springer, Berlin (1975).

    MATH  Google Scholar 

  95. J. C. Kelly, “Bitopological spaces,” Proc. London Math. Soc. (3), 13, 71–89 (1963).

  96. M. A. Khamsi, “Generalized metric spaces: A survey,” J. Fixed Point Theory Appl., 17, No. 3, 455–475 (2015).

    MathSciNet  MATH  Google Scholar 

  97. M. Kikkawa and T. Suzuki, “Some similarity between contractions and Kannan mappings,” Fixed Point Theory Appl., 649749 (2008).

  98. W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham (2014).

    MATH  Google Scholar 

  99. W. A. Kirk, “Contraction mappings and extensions,” in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht, 1–34 (2001).

  100. W. A. Kirk and L. M. Saliga, “The Brézis–Browder order principle and extensions of Caristi’s theorem,” Nonlinear Anal., 47, No. 4, 2765–2778 (2001).

    MathSciNet  MATH  Google Scholar 

  101. W. A. Kirk and B. Sims, eds., Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht (2001).

    MATH  Google Scholar 

  102. V. L. Klee, Jr., “Some topological properties of convex sets,” Trans. Am. Math. Soc., 78, 30–45 (1955).

    MathSciNet  MATH  Google Scholar 

  103. J. Klimeš, “Characterizations of completeness for semilattices by using of fixed points,” Scripta Fac. Sci. Natur. Univ. Purk. Brun., 12, No. 10, 507–513 (1982).

    MathSciNet  Google Scholar 

  104. J. Klimeš, “A characterization of a semilattice completeness,” Scripta Fac. Sci. Natur. Univ. Purk. Brun., 14, No. 8, 399–407 (1984).

    MathSciNet  Google Scholar 

  105. J. Klimeš, “Fixed point characterization of completeness on lattices for relatively isotone mappings,” Arch. Math. (Brno), 20, No. 3, 125–132 (1984).

  106. J. Klimeš, “A characterization of inductive posets,” Arch. Math. (Brno), 21, No. 1, 39–42 (1985).

  107. R. D. Kopperman, “Which topologies are quasimetrizable?” Topol. Appl., 52, No. 2, 99–107 (1993).

    MathSciNet  MATH  Google Scholar 

  108. B. K. Lahiri, M. K. Chakrabarty, and A. Sen, “Converse of Banach’s contraction principle and star operation,” Proc. Natl. Acad. Sci. India Sect. A, 79, No. 4, 367–374 (2009).

    MathSciNet  MATH  Google Scholar 

  109. S. Leader, “A topological characterization of Banach contractions,” Pacific J. Math., 69, No. 2, 461–466 (1977).

    MathSciNet  MATH  Google Scholar 

  110. S. Leader, “Uniformly contractive fixed points in compact metric spaces,” Proc. Am. Math. Soc., 86, No. 1, 153–158 (1982).

    MathSciNet  MATH  Google Scholar 

  111. S. Leader, “Equivalent Cauchy sequences and contractive fixed points in metric spaces,” Studia Math., 76, No. 1, 63–67 (1983).

    MathSciNet  MATH  Google Scholar 

  112. W. Lee and Y. Choi, “A survey on characterizations of metric completeness,” Nonlinear Anal. Forum, 19, 265–276 (2014).

    MathSciNet  MATH  Google Scholar 

  113. L.-J. Lin and W.-S. Du, “Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces,” J. Math. Anal. Appl., 323, No. 1, 360–370 (2006).

    MathSciNet  MATH  Google Scholar 

  114. L.-J. Lin and W.-S. Du, “Some equivalent formulations of the generalized Ekeland’s variational principle and their applications,” Nonlinear Anal., 67, No. 1, 187–199 (2007).

    MathSciNet  MATH  Google Scholar 

  115. L.-J. Lin and W.-S. Du, “On maximal element theorems, variants of Ekeland’s variational principle and their applications,” Nonlinear Anal., 68, No. 5, 1246–1262 (2008).

    MathSciNet  MATH  Google Scholar 

  116. Z. Liu, “Fixed points and completeness,” Turk. J. Math., 20, No. 4, 467–472 (1996).

    MathSciNet  MATH  Google Scholar 

  117. Z. Liu and S. M. Kang, “On characterizations of metric completeness,” Indian J. Math., 44, No. 2, 183–187 (2002).

    MathSciNet  MATH  Google Scholar 

  118. Z. Liu and S. M. Kang, “On characterizations of ≤-completeness and metric completeness,” Southeast Asian Bull. Math., 27, No. 2, 325–331 (2003).

    MathSciNet  MATH  Google Scholar 

  119. R. Mańka, “Connection between set theory and the fixed point property,” Colloq. Math., 53, No. 2, 177–184 (1987).

    MathSciNet  MATH  Google Scholar 

  120. R. Mańka, “Some forms of the axiom of choice,” Jbuch. Kurt-Gödel-Ges., 24–34 (1988).

  121. R. Mańka, “Turinici’s fixed point theorem and the axiom of choice,” Rep. Math. Logic, 22, 15–19 (1988).

    MathSciNet  MATH  Google Scholar 

  122. J. Marín, S. Romaguera, and P. Tirado, “Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces,” Fixed Point Theory Appl., 2 (2011).

  123. G. Markowsky, “Chain-complete posets and directed sets with applications,” Algebra Universalis, 6, No. 1, 53–68 (1976).

    MathSciNet  MATH  Google Scholar 

  124. S. G. Matthews, Partial Metric Spaces, Research Report, No. 212, Univ. of Warwick, UK (1992).

  125. S. G. Matthews, The Cycle Contraction Mapping Theorem, Research Report, No. 228, Univ. of Warwick, UK (1992).

  126. S. G. Matthews, The Topology of Partial Metric Spaces, Research Report, No. 222, Univ. of Warwick, UK (1992).

  127. S. G. Matthews, “Partial metric topology,” in: Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci., Vol. 728, New York Acad. Sci., New York (1994), pp. 183–197.

  128. P. R. Meyers, “Some extensions of Banach’s contraction theorem,” J. Res. Natl. Bur. Stand. Sect. B, 69B, 179–184 (1965).

    MathSciNet  MATH  Google Scholar 

  129. P. R. Meyers, “A converse to Banach’s contraction theorem,” J. Res. Nat. Bur. Stand. Sect. B, 71B, 73–76 (1967).

    MathSciNet  MATH  Google Scholar 

  130. R. N. Mukherjee and T. Som, “An application of Meyer’s theorem on converse of Banach’s contraction principle,” Bull. Inst. Math. Acad. Sinica, 12, No. 3, 253–255 (1984).

    MathSciNet  MATH  Google Scholar 

  131. V. V. Nemytskiĭ, “The fixed point method in analysis,” Usp. Mat. Nauk, 1, 141–174 (1936).

    MATH  Google Scholar 

  132. A.-M. Nicolae, On Completeness and Fixed Points, Master Thesis, Babeş–Bolyai University, Fac. of Math. and Comput. Sci., Cluj-Napoca (2008).

  133. J. J. Nieto, R. L. Pouso, and R. Rodríguez-López, “Fixed point theorems in ordered abstract spaces,” Proc. Am. Math. Soc., 135, No. 8, 2505–2517 (2007).

  134. J. J. Nieto and R. Rodríguez-López, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” Order, 22, No. 3, 223–239 (2005).

  135. J. J. Nieto and R. Rodríguez-López, “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations,” Acta Math. Sin. (Engl. Ser.), 23, No. 12, 2205–2212 (2007).

  136. S. J. O’Neill, “Partial metrics, valuations, and domain theory,” Ann. N.Y. Acad. Sci., 806, 304–315 (1996).

    MathSciNet  MATH  Google Scholar 

  137. S. Oltra and O. Valero, “Banach’s fixed point theorem for partial metric spaces,” Rend. Istit. Mat. Univ. Trieste, 36, No. 1-2, 17–26 (2004).

    MathSciNet  MATH  Google Scholar 

  138. V. I. Opoitsev, “A converse of the contraction mapping principle,” Usp. Mat. Nauk, 31, No. 4 (190), 169–198 (1976).

  139. D. Paesano and P. Vetro, “Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces,” Topol. Appl., 159, No. 3, 911–920 (2012).

    MathSciNet  MATH  Google Scholar 

  140. B. Palczewski and A. Miczko, “On some converses of generalized Banach contraction principles,” Nonlinear Functional Analysis and Its Applications (Maratea, 1985 ), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 173, Reidel, Dordrecht (1986), pp. 335–351.

  141. B. Palczewski and A. Miczko, “Converses of generalized Banach contraction principles and remarks on mappings with a contractive iterate at the point,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17, No. 1, 71–91 (1987).

    MathSciNet  MATH  Google Scholar 

  142. S. Park and B. E. Rhoades, “Comments on characterizations for metric completeness,” Math. Japon., 31, No. 1, 95–97 (1986).

    MathSciNet  MATH  Google Scholar 

  143. L. Pasicki, “Dislocated metric and fixed point theorems,” Fixed Point Theory Appl., 82 (2015).

  144. J.-P. Penot, “The drop theorem, the petal theorem and Ekeland’s variational principle,” Nonlinear Anal., 10, No. 9, 813–822 (1986).

    MathSciNet  MATH  Google Scholar 

  145. C. Petalas and T. Vidalis, “A fixed point theorem in non-Archimedean vector spaces,” Proc. Am. Math. Soc., 118, No. 3, 819–821 (1993).

    MathSciNet  MATH  Google Scholar 

  146. A. Petruşel, “Multivalued weakly Picard operators and applications,” Sci. Math. Jpn., 59, No. 1, 169–202 (2004).

    MathSciNet  MATH  Google Scholar 

  147. A. Petruşel and G. Petruşel, “Multivalued Picard operators,” J. Nonlinear Convex Anal., 13, No. 1, 157–171 (2012).

    MathSciNet  MATH  Google Scholar 

  148. A. Petruşel and I. A. Rus, “Fixed point theorems in ordered L-spaces,” Proc. Am. Math. Soc., 134, No. 2, 411–418 (2006).

    MathSciNet  MATH  Google Scholar 

  149. S. Prieß-Crampe, “Der Banachsche Fixpunktsatz für ultrametrische Räume,” Results Math., 18, No. 1-2, 178–186 (1990).

    MathSciNet  MATH  Google Scholar 

  150. A. C. M. Ran and M. C. B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations,” Proc. Am. Math. Soc., 132, No. 5, 1435–1443 (2004).

    MathSciNet  MATH  Google Scholar 

  151. S. Romaguera, “A Kirk type characterization of completeness for partial metric spaces,” Fixed Point Theory Appl., 493298 (2010).

  152. S. Romaguera and P. Tirado, “A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem,” Fixed Point Theory Appl., 183 (2015).

  153. S. Romaguera and O. Valero, “Domain theoretic characterisations of quasi-metric completeness in terms of formal balls,” Math. Struct. Comput. Sci., 20, No. 3, 453–472 (2010).

    MathSciNet  MATH  Google Scholar 

  154. H. Rubin and J. E. Rubin, Equivalents of the Axiom of Choice. II, Stud. Logic Foundat. Math., Vol. 116, North-Holland, Amsterdam (1985).

  155. I. A. Rus, Metrical Fixed Point Theorems, Univ. “Babeş–Bolyai,” Fac. Mat., Cluj-Napoca (1979).

  156. I. A. Rus, “Weakly Picard mappings,” Comment. Math. Univ. Carolin., 34, No. 4, 769–773 (1993).

    MathSciNet  MATH  Google Scholar 

  157. I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca (2001).

  158. I. A. Rus, “Picard operators and applications,” Sci. Math. Jpn., 58, No. 1, 191–219 (2003).

    MathSciNet  MATH  Google Scholar 

  159. I. A. Rus, “Fixed point theory in partial metric spaces,” An. Univ. Vest Timiş. Ser. Mat.-Inform., 46, No. 2, 149–160 (2008).

    MathSciNet  MATH  Google Scholar 

  160. I. A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca (2008).

  161. B. Samet, “Discussion on ‘A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces’ by A. Branciari,” Publ. Math. Debrecen 76, No. 3-4, 493–494 (2010).

    MathSciNet  MATH  Google Scholar 

  162. D. Scott, “Continuous lattices,” Toposes, Algebraic Geometry and Logic (Conf., Dalhousie Univ., Halifax, N. S., 1971), Springer, Berlin (1972), pp. 97–136.

  163. N. Shahzad and O. Valero, “On 0-complete partial metric spaces and quantitative fixed point techniques in denotational semantics,” Abstr. Appl. Anal., 985095 (2013).

  164. N. Shahzad and O. Valero, “A Nemytskii–Edelstein type fixed point theorem for partial metric spaces,” Fixed Point Theory Appl., 26 (2015).

  165. N. Shioji, T. Suzuki, and W. Takahashi, “Contractive mappings, Kannan mappings and metric completeness,” Proc. Am. Math. Soc., 126, No. 10, 3117–3124 (1998).

    MathSciNet  MATH  Google Scholar 

  166. R. E. Smithson, “Fixed points of order preserving multifunctions,” Proc. Am. Math. Soc., 28, 304–310 (1971).

    MathSciNet  MATH  Google Scholar 

  167. R. E. Smithson, “Fixed points in partially ordered sets,” Pacific J. Math., 45, 363–367 (1973).

    MathSciNet  MATH  Google Scholar 

  168. V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor, Mathematical Theory of Domains, Cambridge Tracts in Theor. Comput. Sci., Vol. 22, Cambridge Univ. Press, Cambridge (1994).

  169. P. V. Subrahmanyam, “Completeness and fixed-points,” Monatsh. Math., 80, No. 4, 325–330 (1975).

    MathSciNet  MATH  Google Scholar 

  170. F. Sullivan, “A characterization of complete metric spaces,” Proc. Am. Math. Soc., 83, No. 2, 345–346 (1981).

    MathSciNet  MATH  Google Scholar 

  171. F. Sullivan, “Ordering and completeness of metric spaces,” Nieuw Arch. Wisk. (3), 29, No. 2, 178–193 (1981).

  172. T. Suzuki, “Generalized distance and existence theorems in complete metric spaces,” J. Math. Anal. Appl., 253, No. 2, 440–458 (2001).

    MathSciNet  MATH  Google Scholar 

  173. T. Suzuki, “Several fixed point theorems concerning τ -distance,” Fixed Point Theory Appl., No. 3, 195–209 (2004).

  174. T. Suzuki, “Counterexamples on τ-distance versions of generalized Caristi’s fixed point theorems,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 52, 15–20 (2005).

  175. T. Suzuki, “The strong Ekeland variational principle,” J. Math. Anal. Appl., 320, No. 2, 787–794 (2006).

    MathSciNet  MATH  Google Scholar 

  176. T. Suzuki, “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings,” J. Math. Anal. Appl., 340, No. 2, 1088–1095 (2008).

    MathSciNet  MATH  Google Scholar 

  177. T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,” Proc. Am. Math. Soc., 136, No. 5, 1861–1869 (2008).

    MathSciNet  MATH  Google Scholar 

  178. T. Suzuki, “w-distances and τ-distances,” Nonlinear Funct. Anal. Appl., 13(1), 15–27 (2008).

  179. T. Suzuki, “Some notes on τ-distance versions of Ekeland’s variational principle,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 56, 19–28 (2009).

  180. T. Suzuki, “Some notes on τ-distance versions of Ekeland’s variational principle,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 56, 19–28 (2009).

  181. T. Suzuki, “Characterizations of reflexivity and compactness via the strong Ekeland variational principle,” Nonlinear Anal., 72 , No. 5, 2204–2209 (2010).

    MathSciNet  MATH  Google Scholar 

  182. T. Suzuki, “Some notes on the class of contractions with respect to τ-distance,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 57, 9–18 (2010).

  183. T. Suzuki and W. Takahashi, “Fixed point theorems and characterizations of metric completeness,” Topol. Methods Nonlinear Anal., 8, No. 2, 371–382 (1996).

    MathSciNet  MATH  Google Scholar 

  184. W. Takahashi, “Existence theorems generalizing fixed point theorems for multivalued mappings,” Fixed Point Theory and Applications (Marseille, 1989), Pitman Res. Notes Math. Ser., Vol. 252, Longman Sci. Tech., Harlow (1991), pp. 397–406.

  185. W. Takahashi, “Existence theorems in metric spaces and characterizations of metric completeness,” NLA98: Convex Analysis and Chaos (Sakado, 1998 ), Josai Math. Monogr., Vol. 1, Josai Univ., Sakado (1999), pp. 67–85.

  186. W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yokohama Publ., Yokohama (2000).

  187. W. Takahashi, N.-C. Wong, and J.-C. Yao, “Fixed point theorems for general contractive mappings with W-distances in metric spaces,” J. Nonlinear Convex Anal., 14, No. 3, 637–648 (2013).

    MathSciNet  MATH  Google Scholar 

  188. M. R. Tasković, “The axiom of choice, fixed point theorems, and inductive ordered sets,” Proc. Am. Math. Soc., 116, No. 4, 897–904 (1992).

    MathSciNet  MATH  Google Scholar 

  189. M. R. Tasković, “Axiom of choice—100th next,” Math. Morav., 8, No. 1, 39–62 (2004).

    MathSciNet  MATH  Google Scholar 

  190. M. R. Tasković, “The axiom of infinite choice,” Math. Morav., 16, No. 1, 1–32 (2012).

    MathSciNet  MATH  Google Scholar 

  191. D. Tataru, “Viscosity solutions of Hamilton–Jacobi equations with unbounded nonlinear terms,” J. Math. Anal. Appl., 163, No. 2, 345–392 (1992).

    MathSciNet  MATH  Google Scholar 

  192. O. Valero, “On Banach fixed point theorems for partial metric spaces,” Appl. Gen. Topol., 6, No. 2, 229–240 (2005).

    MathSciNet  MATH  Google Scholar 

  193. O. Valero, “On Banach’s fixed point theorem and formal balls,” Appl. Sci., 10, 256–258 (2008).

    MathSciNet  MATH  Google Scholar 

  194. G. Wang, B. L. Chen, and L. S. Wang, “A new converse to Banach’s contraction mapping theorem: a nonlinear convergence principle,” Gongcheng Shuxue Xuebao, 16, No. 1, 135–138 (1999).

    MathSciNet  MATH  Google Scholar 

  195. L. E. Ward, Jr., “Completeness in semi-lattices,” Can. J. Math., 9, 578–582 (1957).

    MathSciNet  MATH  Google Scholar 

  196. J. D. Weston, “A characterization of metric completeness,” Proc. Am. Math. Soc., 64, No. 1, 186–188 (1977).

    MathSciNet  MATH  Google Scholar 

  197. E. Witt, “On Zorn’s theorem,” Rev. Math. Hisp.-Am., IV. Ser., 10, 82–85 (1950).

    MathSciNet  MATH  Google Scholar 

  198. E. S. Wolk, “Dedekind completeness and a fixed-point theorem,” Can. J. Math., 9, 400–405 (1957).

    MathSciNet  MATH  Google Scholar 

  199. J. S. W. Wong, “Generalizations of the converse of the contraction mapping principle,” Can. J. Math., 18, 1095–1104 (1966).

    MathSciNet  MATH  Google Scholar 

  200. S.-W. Xiang, “Equivalence of completeness and contraction property,” Proc. Am. Math. Soc., S135, No. 4, 1051–1058 (2007).

    MathSciNet  MATH  Google Scholar 

  201. E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer, New York (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cobzaş.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 22, No. 1, pp. 127–215, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobzaş, S. Fixed Points and Completeness in Metric and Generalized Metric Spaces. J Math Sci 250, 475–535 (2020). https://doi.org/10.1007/s10958-020-05027-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05027-1

Navigation