Skip to main content
Log in

Determinantal Representations for the Solution of the Generalized Sylvester Quaternion Matrix Equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

By using the determinantal representations of the Moore–Penrose inverse matrix, within the framework of the theory of noncommutative column–row determinants, we obtain determinantal representations (analogs of the Cramer rule) for the solution of the generalized Sylvester quaternion matrix equation AXB + CYD = E .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Kyrchei, “Analog of the classical adjoint matrix over a body with involution,” Mat. Met. Fiz.-Mekh. Polya, 46, No. 4, 81–91 (2003).

    MATH  Google Scholar 

  2. I. I. Kyrchei, “Determinantal representation of the Moore–Penrose inverse matrix over the quaternion skew field,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 3, 36–45 (2010); English translation:J. Math. Sci., 180, No. 1, 23–33 (2012).

  3. I. I. Kyrchei, “Classical adjoint matrix for the Hermitian matrix over a body,” Mat. Met. Fiz.-Mekh. Polya, 44, No. 3, 33–48 (2001).

    Google Scholar 

  4. J. K. Baksalary and R. Kala, “The matrix equation AXB + CYD = E ,” Linear Algebra Appl., 30, 141–147 (1980).

    Article  MathSciNet  Google Scholar 

  5. R. B. Bapat, K. P. S. Bhaskara Rao, and K. Manjunatha Prasad, “Generalized inverses over integral domains,” Linear Algebra Appl., 140, 181–196 (1990).

    Article  MathSciNet  Google Scholar 

  6. C. Chen and D. Schonfeld, “Pose estimation from multiple cameras based on Sylvester’s equation,” Comput. Vis. Image Und., 114, No. 6, 652–666 (2010).

    Article  Google Scholar 

  7. V. Futorny, T. Klymchuk, and V. V. Sergeichuk, “Roth’s solvability criteria for the matrix equations AX - \( \hat{X} \)B = C and XA \( \hat{X} \)B = C over the skew field of quaternions with an involutive automorphism q\( \hat{q} \) ,” Linear Algebra Appl., 510, 246–258 (2016).

    Article  MathSciNet  Google Scholar 

  8. R. Gabriel, “Das verallgemeinerte inverse einer matrix, deren elemente einem belie-bligen körper angehören,“ J. Reine Angew. Math., 234, 107–122 (1969).

  9. Z. H. He and Q. W. Wang, “A system of periodic discrete-time coupled Sylvester quaternion matrix equations,” Algebra Colloq., 24, No. 1, 169–180 (2017).

    Article  MathSciNet  Google Scholar 

  10. Z. H. He, Q. W. Wang, and Y. Zhang, “A system of quaternary coupled Sylvester-type real quaternion matrix equations,” Automatica, 87, 25–31 (2018).

    Article  MathSciNet  Google Scholar 

  11. I. Kyrchei, “Determinantal representations of solutions to systems of quaternion matrix equations,” Adv. Appl. Clifford Algebras, 28, No. 1, Article 23 (2018).

  12. I. Kyrchei, “Determinantal representations of the Drazin and W -weighted Drazin inverses over the quaternion skew field with applications,” in: S. Griffin (editor), Quaternions: Theory and Applications, Nova Science Publishers, New York (2017), pp. 201–276.

    Google Scholar 

  13. I. Kyrchei, “Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations,” Appl. Math. Comput., 238, 193–207 (2014).

    MathSciNet  MATH  Google Scholar 

  14. I. Kyrchei, “Determinantal representations of the quaternion weighted Moore–Penrose inverse and its applications,” in: A. R. Baswell (editor), Advances in Mathematics Research, Vol. 23, Nova Sci. Publ., New York (2017), pp. 35–96.

    Google Scholar 

  15. I. Kyrchei, “Determinantal representations of the W –weighted Drazin inverse over the quaternion skew field.” Appl. Math. Comput., 264, 453–465 (2015).

    MathSciNet  MATH  Google Scholar 

  16. I. Kyrchei, “Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations,” Linear Algebra Appl., 438, No. 1, 136–152 (2013).

    Article  MathSciNet  Google Scholar 

  17. I. I. Kyrchei, “Analogs of the adjoint matrix for generalized inverses and corresponding Cramer’s rules,” Linear Multilinear Algebra, 56, No. 4, 453–469 (2008).

    Article  MathSciNet  Google Scholar 

  18. I. I. Kyrchei, “Cramer's rule for generalized inverse solutions,” in: I. Kyrchei (editor), Advances in Linear Algebra Research, Nova Sci. Publ., New York (2015), pp. 79–132.

    Google Scholar 

  19. I. I. Kyrchei, “Determinantal representations of the Moore–Penrose inverse over the quaternion skew field and corresponding Cramer’s rules,” Linear Multilinear Algebra, 59, No. 4, 413–431 (2011).

    Article  MathSciNet  Google Scholar 

  20. I. I. Kyrchei, “Explicit determinantal representation formulas for the solution of the two-sided restricted quaternionic matrix equation,” J. Appl. Math. Comput., 58, Issue 1–2, 335–365 (2017).

    MathSciNet  MATH  Google Scholar 

  21. I. I. Kyrchei, “Explicit determinantal representation formulas of W -weighted Drazin inverse solutions of some matrix equations over the quaternion skew field,” Math. Probl. Eng., Article ID 8673809 (2016).

  22. I. I. Kyrchei, “The theory of the column and row determinants in a quaternion linear algebra,” in: A. R. Baswell (editor), Advances in Mathematics Research, vol. 15, Nova Sc. Publ., New York (2012), pp. 301–358.

    Google Scholar 

  23. I. Kyrchei, “Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore–Penrose inverse,” Appl. Math. Comput., 309, 1–16 (2017).

    Article  MathSciNet  Google Scholar 

  24. H. Liping, “The matrix equation AXB - GXD = E over the quaternion field,” Linear Algebra Appl., 234, 197–208 (1996).

    Article  MathSciNet  Google Scholar 

  25. A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robot. Res., 4, No. 3, 109–117 (1985).

    Article  Google Scholar 

  26. A. Rehman, Q. W. Wang, and Z. H. He, “Solution to a system of real quaternion matrix equations encompassing η -Hermicity,” Appl. Math. Comput., 265, 945–957 (2015).

    MathSciNet  MATH  Google Scholar 

  27. A. Shahzad, B. L. Jones, E. C. Kerrigan, and G. A. Constantinides, “An efficient algorithm for the solution of a coupled Sylvester equation appearing in descriptor systems,” Automatica, 47, No. 1, 244–248 (2011).

    Article  MathSciNet  Google Scholar 

  28. S. Y. Shim and Y. Chen, “Least squares solution of matrix equation AXB* + CYD* = E ,” SIAM J. Matrix Anal. Appl., 24, No. 3, 802–808 (2003).

    Article  MathSciNet  Google Scholar 

  29. S. Şimşek, M. Sarduvan, and H. Özdemir, “Centrohermitian and skew-centrohermitian solutions to the minimum residual and matrix nearness problems of the quaternion matrix equation (AXB, DXE) = (C, F) ,” Adv. Appl. Clifford Algebras, 27, No. 3, 2201–2214 (2017).

    Article  MathSciNet  Google Scholar 

  30. G. J. Song, “Characterization of the W –weighted Drazin inverse over the quaternion skew field with applications,” Electron. J. Linear Algebra, 26, 1–14 (2013).

    Article  MathSciNet  Google Scholar 

  31. G. J. Song and C. Z. Dong, “New results on condensed Cramer’s rule for the general solution to some restricted quaternion matrix equations,” J. Appl. Math. Comput., 53, No. 1–2, 321–341 (2017).

    Article  MathSciNet  Google Scholar 

  32. G. J. Song, Q. W. Wang, and H. X. Chang, “Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field,”Comput. Math. Appl., 61, No. 6, 1576–1589 (2011).

    Article  MathSciNet  Google Scholar 

  33. G. J. Song, Q. W. Wang, and S. W. Yu, “Cramer’s rule for a system of quaternion matrix equations with applications,” Appl. Math. Comp., 336, 490–499 (2018).

    Article  MathSciNet  Google Scholar 

  34. P. Stanimirović, “General determinantal representation of pseudoinverses of matrices,” Mat. Vesnik., 48, No. 1–2, 1–9 (1996).

    MathSciNet  MATH  Google Scholar 

  35. A. Varga, “Robust pole assignment via Sylvester equation based state feedback parametrization,” in: Proc. of the IEEE Internat. Symp. on Computer-Aided Control System Design (CACSD-2000) (September 25–27, 2000, Anchorage, USA), IEEE (2000), pp. 13–18.

  36. Q. W. Wang, “A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity,” Linear Algebra Appl., 384, 43–54 (2004).

    Article  MathSciNet  Google Scholar 

  37. Q. W. Wang, A. Rehman, Z. H. He, and Y. Zhang, “Constraint generalized Sylvester matrix equations,” Automatica, 69, 60–64 (2016).

    Article  MathSciNet  Google Scholar 

  38. Q. W. Wang, J. W. Van der Woude, and H. X. Chang, “A system of real quaternion matrix equations with applications,” Linear Algebra Appl., 431, No. 12, 2291–2303 (2009).

    Article  MathSciNet  Google Scholar 

  39. A. G. Wu, F. Zhu, G. R. Duan, and Y. Zhang, “Solving the generalized Sylvester matrix equation AV + BW = EVF via a Kronecker map,” Appl. Math. Lett., 21, No. 10, 1069–1073 (2008).

    Article  MathSciNet  Google Scholar 

  40. G. Xu, M. Wei, and D. Zheng, “On solutions of matrix equation AXB + CYD = F ,” Linear Algebra Appl., 279, No. 1–3, 93–109 (1998).

    Article  MathSciNet  Google Scholar 

  41. S. F. Yuan, Q. W. Wang, Y. B. Yu, and Y. Tian, “On Hermitian solutions of the split quaternion matrix equation AXB + CXD = E ,” Adv. Appl. Clifford Algebras, 27, No. 4, 3235–3252 (2017).

    Article  MathSciNet  Google Scholar 

  42. X. Zhang, “A system of generalized Sylvester quaternion matrix equations and its applications,” Appl. Math. Comput., 273, 74–81 (2016).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to І. І. Kyrchei.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 60, No. 3, pp. 97–106, August–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyrchei, І.І. Determinantal Representations for the Solution of the Generalized Sylvester Quaternion Matrix Equation. J Math Sci 246, 234–244 (2020). https://doi.org/10.1007/s10958-020-04733-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04733-0

Navigation