Skip to main content
Log in

Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Desch and R. K. Miller, “Exponential stabilization of Volterra integrodifferential equations in Hilbert space,” J. Differ. Equ., 70, 366–389 (1987).

    Article  MATH  Google Scholar 

  2. G. Di Blasio, “Parabolic Volterra equations of convolution type,” J. Integral Equ. Appl., 6, 479–508 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Di Blasio, K. Kunisch, and E. Sinestari, “L 2-regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives,” J. Math. Anal. Appl., 102, 38–57 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Di Blasio, K. Kunisch, and E. Sinestari, “Stability for abstract linear functional differential equations,” Israel J. Math., 50, No. 3, 231–263 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  5. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  6. M. E. Gurtin and A. C. Pipkin, “Theory of heat conduction with finite wave speed,” Arch. Ration. Mech. Anal., 31, 113–126 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Il’yushin and B. E. Pobedrya, Foundations of the Mathematical Theory of Thermal Viscoelasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  8. S. Ivanov and L. Pandolfi, “Heat equations with memory: lack of controllability to the rest,” J. Math. Anal. Appl., 355, 1–11 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).

    Book  MATH  Google Scholar 

  10. N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Nonselfadjoint Problems for Viscous Fluids, Birkhäuser, Basel (2003).

    Book  MATH  Google Scholar 

  11. K. Kunisch and M. Mastinsek, “Dual semigroups and structual operators for partial differential equations with unbounded operators acting on the delays,” Differential Integral Equ., 3, No. 3, 733–756 (1990).

    MATH  Google Scholar 

  12. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  13. A. V. Lykov, Heat and Mass Exchange Problems [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  14. D. A. Medvedev, V. V. Vlasov, and J. Wu, “Solvability and structural properties of abstract neutral functional differential equations,” Funct. Differ. Equ., 15, No. 3-4, 249–272 (2008).

    MathSciNet  MATH  Google Scholar 

  15. R. K. Miller, “Volterra integral equation in Banach space,” Funkcial. Ekvac., 18, 163–194 (1975).

    MathSciNet  MATH  Google Scholar 

  16. R. K. Miller, “An integrodifferential equation for rigid heat conductors with memory,” J. Math. Anal. Appl., 66, 313–332 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. K. Miller and R. L. Wheeler, “Well-posedness and stability of linear Volterra interodifferential equations in abstract spaces,” Funkcial. Ekvac., 21, 279–305 (1978).

    MathSciNet  MATH  Google Scholar 

  18. A. I. Miloslavskii, “Spectral properties of operator pencils arising in viscoelasticity,” Deposited in Ukr. NIINTI, No. 1229-87 (1987).

  19. V. V. Palin and E. V. Radkevich, “Conservation laws and their hyperbolic regularizations,” J. Math. Sci. (N. Y.), 164, No. 6, 922–944 (2010).

  20. L. Pandolfi, “The controllability of the Gurtin–Pipkin equations: a cosine operator approach,” Appl. Math. Optim., 52, 143–165 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. N. Rabotnov, Elements of Continuum Mechanics of Materials with Memory [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  22. E. Sanchez-Palensia, Nonhomogeneous Media and Vibration Theory, Springer, Berlin (1980).

    Google Scholar 

  23. A. S. Shamaev and V. V. Shumilova, “Averaging the acoustics equations for a viscoelastic material with channels filled with a viscous compressible fluid,” Fluid Dyn., 46, No. 2, 250–261 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. A. Shkalikov, “Strongly damped operator pencils and the solvability of the corresponding operator-differential equations,” Math. USSR-Sb., 63, No. 1, 97–119 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. A. Shkalikov, “Elliptic equations in a Hilbert space and related spectral problems,” J. Soviet Math., 51, No. 4, 2399–2467 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. V. Vlasov, “On the solvability and properties of solutions of functional-differential equations in a Hilbert space,” Sb. Math., 186, No. 8, 1147–1172 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. V. Vlasov, “On the solvability and estimates for the solutions of functional-differential equations in Sobolev spaces,” Proc. Steklov Inst. Math., 227, 104–115 (1999).

    MathSciNet  Google Scholar 

  28. V. V. Vlasov, “Well-defined solvability of abstract parabolic equations with aftereffect,” Dokl. Math., 76, No. 1, 511–513 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. V. Vlasov, A. A. Gavrikov, S.A. Ivanov, D.Yu. Knyaz’kov, V.A. Samarin, and A. S. Shamaev, “Spectral properties of combined media,” J. Math. Sci. (N. Y.), 164, No. 6, 948–963 (2009).

  30. V. V. Vlasov and D. A. Medvedev, “Functional-differential equations in Sobolev spaces and related problems in spectral theory,” J. Math. Sci. (N. Y.), 164, No. 5, 653–841 (2008).

  31. V. V. Vlasov, D. A. Medvedev, and N. A. Rautian, “Functional-differential equations in Sobolev spaces and their spectral analysis,” Sovrem. Probl. Mat. Mech., 8 (2011).

  32. V. V. Vlasov and N. A. Rautian, “Well-defined solvability and spectral analysis of abstract hyperbolic integrodifferential equations,” J. Math. Sci. (N. Y.), 179, No. 3, 390–414 (2011).

  33. V. V. Vlasov and N. A. Rautian, “Correct solvability of integro-differential equations arising in the theory of viscoelastisity,” Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan, 40, 407–417 (2014).

    MATH  Google Scholar 

  34. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Solvability and spectral analysis of integrodifferential equations that arise in thermophysics and acoustics,” Dokl. Math., 82, No. 2, 684–687 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Spectral analysis and correct solvability of abstract integrodifferential equations that arise in thermophysics and acoustics,” J. Math. Sci. (N. Y.), 190, No. 1, 34–65 (2013).

  36. V. V. Vlasov and K. I. Shmatov, “Correct solvability of hyperbolic-type equations with aftereffect in a Hilbert space,” Proc. Stelklov Inst. Math, 243, 120–130 (2003).

    MathSciNet  MATH  Google Scholar 

  37. V. V. Vlasov and J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay,” Funct. Differ. Equ., 16, No. 4, 751–768 (2009).

    MathSciNet  MATH  Google Scholar 

  38. V. V. Vlasov, J. Wu, and G. R. Kabirova, “Correct solvability and the spectral properties of abstract hyperbolic equations with aftereffect,” J. Math. Sci. (N. Y.), 170, No. 3, 388–404 (2010).

  39. J. Wu, “Semigroup and integral form of class of partial differential equations with infinite delay,” Differential Integral Equations, 4, No. 6, 1325–1351 (1991).

    MathSciNet  MATH  Google Scholar 

  40. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York (1996).

    Book  MATH  Google Scholar 

  41. V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications,” Sb. Math., 191, No. 7, 973–1014 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  42. V. V. Zhikov, “On two-scale convergence,” J. Math. Sci. (N. Y.), 120, No. 3, 1328–1352 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vlasov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 58, Proceedings of the Seventh International Conference on Differential and Functional Differential Equations and InternationalWorkshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 22–29 August, 2014). Part 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.V., Rautian, N.A. Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory. J Math Sci 233, 555–577 (2018). https://doi.org/10.1007/s10958-018-3943-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3943-5

Navigation