Skip to main content
Log in

Radiation Conditions and Integral Representations for Clifford Algebra-Valued Null-Solutions of the Helmholtz Operator

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The goal of this paper is to develop a unified approach to radiation conditions for the entire class of null-solutions of the Helmholtz operator which are Clifford algebra-valued. The latter is an algebraic context which permits the simultaneous consideration of scalarvalued and vector-valued functions, as well as differential forms of any mixed degree. In such a setting, we provide a multitude of novel radiation conditions which naturally contain the classical Sommerfeld and Silver–Müller radiation conditions in the case of null-solutions for the scalar Helmholtz operator and the Maxwell system respectively, and which also encompass as a particular case the radiation condition introduced by McIntosh and Mitrea for perturbed Dirac operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sommerfeld, “Die Greensche Funktion der Schwingungsgleichung,” Deutsche Math.-Ver. 21, 309-353 (1912).

    MATH  Google Scholar 

  2. C. H. Wilcox, “A generalization of theorems of Rellich and Atkinson,” Proc. Am. Math. Soc. 7, 271–276 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. McIntosh and M. Mitrea, “Clifford algebras and Maxwell’s equations in Lipschitz domains,” Math. Methods Appl. Sci. 22, No. 18, 1599–1620 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Calderón, “The multipole expansion of radiation fields,” J. Ration. Mech. Anal. 3, 523–537 (1954).

    MathSciNet  MATH  Google Scholar 

  5. C. Müller, “Über die Beugung elektromagnetischer Schwingungen an endlichen homogenen Körpern,” Math. Ann. 123, 345–378 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin etc. (1969).

    Book  MATH  Google Scholar 

  7. W. K. Sounders, “On solutions of Maxwell’s equations in an exterior region,” Proc. Natl. Acad. Sci. USA 38, 342–348 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Weyl, “Die natürlichen Randwertaufgaben im Aussenraum für Strahlungsfelder beliebiger Dimension und beliebigen Ranges,” Math. Z. 56, 105–119 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York etc. (1983).

    MATH  Google Scholar 

  10. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin (1992).

    Book  MATH  Google Scholar 

  11. M. Mitrea, “The method of layer potentials in electromagnetic scattering theory on nonsmooth domains,” Duke Math. J. 77, No. 1, 111–133 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Jawerth and M. Mitrea, “Higher dimensional scattering theory on C 1 and Lipschitz domains,” Am. J. Math. 117, No. 4, 929–963 (1995).

    Article  MATH  Google Scholar 

  13. M. Mitrea, “Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains,” J. Math. Anal. Appl. 202, No.3, 819–842 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Mitrea and M. Mitrea, “Uniqueness for inverse conductivity and transmission problems in the class of Lipschitz domains,” Commun. Partial Differ. Equations, 23, No. 7-8, 1419–1448 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Mitrea, M. Mitrea, and J. Pipher, “Vector potential theory on non-smooth domains in ℝ3 and applications to electromagnetic scattering,” J. Fourier Anal. Appl. 3, No. 2, 131–192 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mitrea, “Generalized Dirac operators on non-smooth manifolds and Maxwell’s equations,” J. Fourier Anal. Appl. 7, No. 3, 207–256 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Mitrea and M. Mitrea, “Finite energy solutions of Maxwell’s equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds,” J. Funct. Anal. 190, No. 2, 339–417 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Marmolejo-Olea, I. Mitrea, M. Mitrea, and Q. Shi, “Transmission boundary problems for Dirac operators on Lipschitz domains and applications to Maxwell’s and Helmholtz’s equations,” Trans. Am. Math. Soc. 364, No. 8, 4369–4424 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Werner, “On the exterior boundary value problem of perfect reflection for stationary electromagnetic wave fields,” J. Math. Anal. Appl. 7 348–396 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Helmholtz, “Theorie der Luftschwingungen in Röhren mit offenen Enden,” J. Reine Angew. Math. 57, 1–72 (1860).

    Article  MathSciNet  Google Scholar 

  21. R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, and V. Rokhlin, “An improved operator expansion algorithm for direct and inverse scattering computations,” Waves Random Media 9, No. 3, 441–457 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Chantaveerod and A. D. Seagar, “Iterative solutions for electromagnetic fields at perfectly reflective and transmissive interfaces using Clifford algebra and the multidimensional Cauchy integral,” IEEE Trans. Antennas Propag. 57, No. 11, 3489–3499 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. M. Grudsky, K. V. Khmelnytskaya, and V. V. Kravchenko, “On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium,” J. Phys. A, Math. Gen. 37, No. 16, 4641–4647 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. V. Khmelnytskaya, V. V. Kravchenko, and H. Oviedo, “Quaternionic integral representations for electromagnetic fields in chiral media,” Telecommun. Radio Eng. 56, No. 4-5, 53–61 (2001).

    Article  Google Scholar 

  25. K. V. Khmelnytskaya, V. V. Kravchenko, and V. S. Rabinovich, “Quaternionic fundamental solutions for electromagnetic scattering problems and application,” Z. Anal. Anwed. 22, No. 1, 147–166 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Schneider and M. Shapiro, “Some properties of the Cauchy-type integral for the time harmonic Maxwell equations,” Integral Equations Oper. Theory 44, No. 1, 93–126 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Seagar, Calculation of electromagnetic fields in three dimensions using the Cauchy integral, IEEE Trans. Mag. 48, No. 2, 175–178 (2012).

    Article  Google Scholar 

  28. F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Pitman, Boston, MA (1982).

    MATH  Google Scholar 

  29. J. Gilbert and M. A. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Univ. Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  30. S. Hofmann, E. Marmolejo-Olea, M. Mitrea, S. Pérez-Esteva, and M. Taylor, “Hardy spaces, singular integrals and the geometry of Euclidean domains of locally finite perimeter,” Geom. Funct. Anal. 19, No. 3, 842–882 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Springer, Berlin (1994).

    Book  MATH  Google Scholar 

  32. J.-C. Nédèlec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Springer, New York, NY (2001).

    Book  MATH  Google Scholar 

  33. A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Expansion-, Integral-, and Variational Methods, Springer, Cham (2015).

    MATH  Google Scholar 

  34. C. Muller, “Zur mathematischen Theorie elektromagnetischer Schwingungen,” Abh. Deutsch. Akad. Wiss. Berlin, Math.-Naturw. Kl. 1945/46, No. 3, 5–56 (1950).

  35. S. Silver, Microwave Antenna Theory and Design, McGraw-Hill, New York (1949).

    Google Scholar 

  36. J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev., II. Ser. 56, 99–107 (1939).

    MATH  Google Scholar 

  37. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley & Sons, New York etc. (1972).

    MATH  Google Scholar 

  38. F. Gesztesy and M. Mitrea, “Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains,” In: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, pp. 105–173, Am. Math. Soc., Providence, RI (2008).

  39. E. B. Fabes, M. Jodeit Jr., and N. M. Rivière, “Potential techniques for boundary value problems on C 1-domains”, Acta Math. 141, No. 3-4, 165–186 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Mitrea, “The method of layer potentials for non-smooth domains with arbitrary topology,” Integral Equations Oper. Theory 29, No. 3, 320–338 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Hofmann, M. Mitrea, and M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains,” Int. Math. Res. Not. No. 14, 2567–2865 (2010).

    MathSciNet  MATH  Google Scholar 

  42. K. Brewster, D. Mitrea, I. Mitrea, and M. Mitrea, “Extending Sobolev functions with partially vanishing traces from locally (ε, δ)-domains and applications to mixed boundary problems,” J. Funct. Anal. 266, No. 7, 4314–4421 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Marmolejo-Olea and S. Pérez-Esteva, “Far-field patterns of solutions of the perturbed Dirac equation,” Math. Methods Appl. Sci. 36, No. 11, 1376–1387 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  44. F. W. J. Olver and L. C. Maximon (Eds.), “Reccurence relations and derivatives” In: NIST Digital Library of Mathematical Functions, Section 10.6. http://dlmf.nist.gv/10.6

  45. H. Federer, Geometric Measure Theory, Springer, Berlin (1996).

    Book  MATH  Google Scholar 

  46. W. Ziemer, Weakly Differentiable Functions, Springer, New York (1989).

    Book  MATH  Google Scholar 

  47. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL (1992).

    MATH  Google Scholar 

  48. D. Mitrea, I. Mitrea and M. Mitrea, A Sharp Divergence Theorem with Non-Tangential Pointwise Traces and Applications [Submitted] (2018).

  49. F. Rellich, Über das asymptotische Verhalten der Los¨ungen von Δu+⋋u = 0 in unendlichen Gebieten,” Jahresber. Dtsch. Math.- Ver. 53, 57–65 (1943).

    MathSciNet  MATH  Google Scholar 

  50. V. D. Kupradze, On Sommerfeld’s radiation principle [in Russian], Dokl. Akad. Nauk SSSR No. 2, 1–7 (1934).

    Google Scholar 

  51. V. D. Kupradze, Fundamental Problems of the Mathematical Theory of Diffraction [in Russian], ONTI, Moscow (1935).

    Google Scholar 

  52. B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York etc. (1997).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mitrea.

Additional information

Translated from Problemy Matematicheskogo Analiza 91, 2018, pp. 79-167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmolejo-Olea, E., Mitrea, I., Mitrea, D. et al. Radiation Conditions and Integral Representations for Clifford Algebra-Valued Null-Solutions of the Helmholtz Operator. J Math Sci 231, 367–472 (2018). https://doi.org/10.1007/s10958-018-3826-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3826-9

Navigation