Skip to main content
Log in

Some Homology Representations for Grassmannians in Cross-Characteristics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let \( \mathbb{F} \) be the finite field of q elements and let \( \mathcal{P}\left( {\mathrm{n},\mathrm{q}} \right) \) denote the projective space of dimension n − 1 over \( \mathbb{F} \). We construct a family \( \mathrm{H}_{\mathrm{k},\mathrm{i}}^{\mathrm{n}} \) of combinatorial homology modules associated to \( \mathcal{P}\left( {\mathrm{n},\mathrm{q}} \right) \) for coefficient fields of positive characteristic co-prime to q. As FGL(n, q)-representations these modules are obtained from the permutation action of GL(n, q) on the Grassmannians of \( {{\mathbb{F}}^{\mathrm{n}}} \). We prove a branching rule for \( \mathrm{H}_{\mathrm{k},\mathrm{i}}^{\mathrm{n}} \) and use this to determine the homology representations completely. Our results include a duality theorem and the characterization of \( \mathrm{H}_{\mathrm{k},\mathrm{i}}^{\mathrm{n}} \) through the standard irreducibles of GL(n, q) over F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Dubois-Violette, “d N = 0: Generalized homology,” K-Theory, 14, No. 4, 371–404 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Fisk, “Homology of projective space over finite fields,” J. Combin. Theory, Ser. A, 78, 309–312 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Frumkin and A. Yakir, “Rank of inclusion matrices and modular representation theory,” Israel J. Math., 71, 309–320 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  4. G. D. James, Representations of General Linear Groups, Cambridge Univ. Press, Cambridge (1984).

    Book  MATH  Google Scholar 

  5. M. M. Kapranov, “On the q-analogue of homological algebra,” arXiv:q-alg/9611005v1.

  6. W. Mayer, “A new homology theory,” Ann. Math., 48, 370–380, 594–605 (1947).

  7. W. Mielants and H. Leemans, “\( {{\mathbb{Z}}_2} \)-cohomology of projective spaces of odd order,” in: Combinatorics’81 (Rome, 1981), pp. 635–651, Ann. Discr. Math. 18, North-Holland, Amsterdam–New York (1983).

  8. V. Mnukhin and J. Siemons, “On modular homology in projective space,” J. Pure Appl. Algebra, 151, No. 1, 51–65 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Mnukhin and J. Siemons, “On Stanley’s inequalities for character multiplicities,” Archiv Math., 97, 513–521 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Morikawa, “On a certain homology of finite projective spaces,” Nagoya Math. J., 90, 57–62 (1983).

    MATH  MathSciNet  Google Scholar 

  11. J. R. Munkres, Elements of Algebraic Topology, Addison Wesley (1984).

  12. A. J. E. Ryba, “Fibonacci representations of the symmetric groups,” J. Algebra, 170, 678–686 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Siemons, “Orbit numbers and the p-rank of incidence matrices in finite projective spaces,” (to appear).

  14. R. P. Stanley, “Some aspects of groups acting on finite posets,” J. Comb. Theory, A32, 121–155 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Siemons.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 414, 2013, pp. 156–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siemons, J., Smith, D. Some Homology Representations for Grassmannians in Cross-Characteristics. J Math Sci 199, 329–342 (2014). https://doi.org/10.1007/s10958-014-1861-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1861-8

Keywords

Navigation