Skip to main content
Log in

Applied Game Theory to Enhance Air Traffic Control in 3D Airspace

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The popularity of air transportation, both for personal and commercial uses, has been growing in recent years. As a result, the traffic volume in the airspace is constantly increasing, which leads to the higher chances of conflicts among aircraft. In air traffic management, conflict detection and resolution are challenging and stressful tasks due to the highly dynamic nature of aircraft flight plans as well as the interdependency among pilots’ decisions. Therefore, reliable and comprehensive decision-making techniques are necessary to deal with such conflicts in the airspace in a timely manner. In this regard, innovative technological developments are essential to assist decision-makers. In this paper, we propose a semi-decentralized, three-stage algorithm based on game theory to resolve potential conflicts among multiple aircraft traveling in a 3D shared airspace. The result from the algorithm shows that deviation costs are highly sensitive to the level of congestion in the airspace. The proposed algorithm provides useful information for air traffic control and pilots to enhance their coordination and facilitate decision-making procedures in scenarios with single and multiple conflicts during both nominal and deviated-from-nominal situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adacher, L., Meloni, C.: An agent based approach to the real time air traffic control. IFAC Proc. 38(1), 126–131 (2005). https://doi.org/10.3182/20050703-6-CZ-1902.02044

    Article  Google Scholar 

  2. Albaba, B.M., Musavi, N., Yildiz, Y.: A 3D game theoretical framework for the evaluation of unmanned aircraft systems airspace integration concepts. Transp. Res. Part C Emerg. Technol. 133, 103417 (2021). https://doi.org/10.1016/j.trc.2021.103417

    Article  Google Scholar 

  3. Baiada, M.: Air traffic control is not the real cause of airline delays. Forbes, p. 19 (2017)

  4. Balazs, B., Vasarhelyi, G.: Coordinated dense aerial traffic with self-driving drones. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6365–6372 (2018) https://doi.org/10.1109/ICRA.2018.8461073

  5. Barker, K., Lakshmivarahan, S., Ghorbani Renani, N., Rangrazjeddi, A., González, A. D., Wood, R.: Applied game theory to enhance air traffic control training (2019). https://coetthp.org/wp-content/uploads/HF002-Applied-Game-Theory-to-Enhance-ATC-Training-Final-Report.pdf

  6. Barratt, S.T., Kochenderfer, M.J., Boyd, S.P.: Learning probabilistic trajectory models of aircraft in terminal airspace from position data. IEEE Trans. Intell. Transp. Syst. 20(9), 3536–3545 (2019). https://doi.org/10.1109/TITS.2018.2877572

    Article  Google Scholar 

  7. Bellomi, F., Bonato, R., Tedeschi, A., Nanni, V.: Satisficing game theory for conflict resolution and traffic optimization. Air Traffic Control Q. 16(3), 211–233 (2008). https://doi.org/10.2514/atcq

    Article  Google Scholar 

  8. Bennett, P.G.: Modelling decisions in international relations: game theory and beyond. Mershon Int. Stud. Rev. 39(1), 19 (1995). https://doi.org/10.2307/222691

    Article  Google Scholar 

  9. Benson, T.: Modern drag equation. NASA. https://wright.nasa.gov/airplane/drageq.html 2014)

  10. Bianco, L.: Multilevel approach to ATC problems: on-line strategic control of flights. Int. J. Syst. Sci. 21(8), 1515–1527 (1990). https://doi.org/10.1080/00207729008910473

    Article  MATH  Google Scholar 

  11. Borst, C., Visser, R.M., van Paassen, M.M., Mulder, M.: Exploring short-term training effects of ecological interfaces: a case study in air traffic control. IEEE Trans. Hum.-Mach. Syst. 49(6), 623–632 (2019). https://doi.org/10.1109/THMS.2019.2919742

    Article  Google Scholar 

  12. Brady, T., Stolzer, A.: The evolusion of air traffic controllers training in the United States. In: International conference on information and communication technologies in education (ICICTE), pp. 407–415 (2017)

  13. Brittain, M., Wei, P.: Autonomous air traffic controller: a deep multi-agent reinforcement learning approach. arXiv Preprint http://arxiv.org/abs/1905.01303 (2019)

  14. Bulusu, V., Polishchuk, V.: A threshold based airspace capacity estimation method for UAS traffic management. In: 11th Annual IEEE International Systems Conference, pp. 1–7 (2017). https://doi.org/10.1109/SYSCON.2017.7934758

  15. Bureau of Transportation Statistics: Transportation statistics annual report (2018). http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/transportation_statistics_annual_report/2000/pdf/entire.pdf

  16. Diao, X., Chen, C.-H.: A sequence model for air traffic flow management rerouting problem. Transp. Res. Part E Logist. Transp. Rev. 110, 15–30 (2018). https://doi.org/10.1016/j.tre.2017.12.002

    Article  Google Scholar 

  17. Dmochowski, P.A., Skorupski, J.: Air traffic smoothness. A new look at the air traffic flow management. Transp. Res. Procedia 28, 127–132 (2017). https://doi.org/10.1016/j.trpro.2017.12.177

    Article  Google Scholar 

  18. Xiaotian, E., Zhang, J.: Holistic thinking and air traffic controllers’ decision making in conflict resolution. Transp. Res. Part F Traffic Psychol. Behav. 45, 110–121 (2017). https://doi.org/10.1016/j.trf.2016.11.007

    Article  Google Scholar 

  19. Federal Aviation Administration: Air traffic by the numbers (2019)

  20. Federal Aviation Administration: Modernization of U.S. Airspace. https://www.faa.gov/nextgen/ (2019)

  21. Gander, P.: Fatigue management in air traffic control: the New Zealand approach. Transp. Res. Part F Traffic Psychol. Behav. 4(1), 49–62 (2001). https://doi.org/10.1016/S1369-8478(01)00013-4

    Article  Google Scholar 

  22. Hansen, J.V.: Genetic search methods in air traffic control. Comput. Oper. Res. 31(3), 445–459 (2004). https://doi.org/10.1016/S0305-0548(02)00228-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Harrison, J., et al.: Cognitive workload and learning assessment during the implementation of a next-generation air traffic control technology using functional near-infrared spectroscopy. IEEE Trans. Hum.-Mach. Syst. 44(4), 429–440 (2014). https://doi.org/10.1109/THMS.2014.2319822

    Article  Google Scholar 

  24. Hill, J., Archibald, J., Stirling, W., Frost, R.: A multi-agent system architecture for distributed air traffic control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2005). https://doi.org/10.2514/6.2005-6049

  25. Jangam, U.B., Mumbai, N.: Innovation in air traffic strategy using game theory. Int. J. Bus. Manag. Res. 3(4), 105–112 (2013)

    Google Scholar 

  26. Jonker, G., Meyer, J.J., Dignum, F.: Towards a market mechanism for airport traffic control. In: Lecture Notes in Computer Science (including Subseries on Lecture Notes in Artificial Intelligence Lecture Notes in Bioinformatics), vol. 3808 LNCS, pp. 500–511 (2005). https://doi.org/10.1007/11595014_50.

  27. Jung, S., Hong, S., Lee, K.: A data-driven air traffic sequencing model based on pairwise preference learning. IEEE Trans. Intell. Transp. Syst. 20(3), 803–816 (2019). https://doi.org/10.1109/TITS.2018.2829863

    Article  Google Scholar 

  28. Kaber, D.B., Perry, C.M., Segall, N., McClernon, C.K., Prinzel, L.J.: Situation awareness implications of adaptive automation for information processing in an air traffic control-related task. Int. J. Ind. Ergon. 36(5), 447–462 (2006). https://doi.org/10.1016/j.ergon.2006.01.008

    Article  Google Scholar 

  29. Klomp, R., Borst, C., van Paassen, R., Mulder, M.: Expertise level, control strategies, and robustness in future air traffic control decision aiding. IEEE Trans. Hum.-Mach. Syst. 46(2), 255–266 (2016). https://doi.org/10.1109/THMS.2015.2417535

    Article  Google Scholar 

  30. Koglbauer, I., Braunstingl, R.: Ab initio pilot training for traffic separation and visual airport procedures in a naturalistic flight simulation environment. Transp. Res. Part F Traffic Psychol. Behav. 58, 1–10 (2018). https://doi.org/10.1016/j.trf.2018.05.023

    Article  Google Scholar 

  31. Kraus, T.L.: The federal aviation administration: a historical perspective, 1903–2008. https://www.faa.gov/about/history/historical_perspective/ (2008)

  32. Krozel, J., Peters, M.: Strategic conflict detection and resolution for free flight. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, no. December, pp. 1822–1828 (1997). https://doi.org/10.1109/CDC.1997.657844

  33. Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000). https://doi.org/10.1109/6979.898217

    Article  Google Scholar 

  34. Liu, W., Hwang, I.: Probabilistic trajectory prediction and conflict detection for air traffic control. J. Guid. Control. Dyn. 34(6), 1779–1789 (2011). https://doi.org/10.2514/1.53645

    Article  Google Scholar 

  35. Liu, W., Liang, X., Ma, Y., Liu, W.: Aircraft trajectory optimization for collision avoidance using stochastic optimal control. Asian J. Control 21(5), 1–13 (2018). https://doi.org/10.1002/asjc.1855

    Article  MathSciNet  MATH  Google Scholar 

  36. Lootens, K.J.B., Efthymiou, M.: The adoption of network-centric data sharing in air traffic management. Inf. Resour. Manag. J. 32(3), 48–69 (2019). https://doi.org/10.4018/IRMJ.2019070103

    Article  Google Scholar 

  37. Ma, X., Jiao, Z., Wang, Z., Panagou, D.: 3-D decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles. IEEE Trans. Control Syst. Technol. 26(3), 939–953 (2018). https://doi.org/10.1109/TCST.2017.2699165

    Article  Google Scholar 

  38. Menon, P.K., Sweriduk, G.D., Sridhar, B.: Optimal strategies for free-flight air traffic conflict resolution. J. Guid. Control. Dyn. 22(2), 202–211 (1999). https://doi.org/10.2514/2.4384

    Article  Google Scholar 

  39. Miele, A., Wang, T., Mathwig, J.A., Ciarcià, M.: Collision avoidance for an aircraft in abort landing: trajectory optimization and guidance. J. Optim. Theory Appl. 146(2), 233–254 (2010). https://doi.org/10.1007/s10957-010-9669-2

    Article  MathSciNet  MATH  Google Scholar 

  40. Mitici, M., Blom, H.A.P.: Mathematical models for air traffic conflict and collision probability estimation. IEEE Trans. Intell. Transp. Syst. 20(3), 1052–1068 (2019). https://doi.org/10.1109/TITS.2018.2839344

    Article  Google Scholar 

  41. Musavi, N., Onural, D., Gunes, K., Yildiz, Y.: Unmanned aircraft systems airspace integration: a game theoretical framework for concept evaluations. J. Guid. Control. Dyn. 40(1), 96–109 (2017). https://doi.org/10.2514/1.G000426

    Article  Google Scholar 

  42. Orsini, N., Rizzuto, D., Nante, N.: Applied game theory. Stata J. (2005). https://doi.org/10.1177/1536867X0500500305

    Article  Google Scholar 

  43. van Paassen, M.M., Borst, C., Ellerbroek, J., Mulder, M., Flach, J.M.: Ecological interface design for vehicle locomotion control. IEEE Trans. Hum.-Mach. Syst. 48(5), 541–555 (2018). https://doi.org/10.1109/THMS.2018.2860601

    Article  Google Scholar 

  44. Pritchett, A.R., Genton, A.: Negotiated decentralized aircraft conflict resolution. IEEE Trans. Intell. Transp. Syst. 19(1), 81–91 (2018). https://doi.org/10.1109/TITS.2017.2693820

    Article  Google Scholar 

  45. RangrazJeddi, A., Ghorbani Renani, N.G., Khademi, A., Shokri, V., Noordin, M.Y.: Low-cost strategy factors in airline industry: the AirAsia case. Adv. Mater. Res. 845, 652–657 (2013). https://doi.org/10.4028/www.scientific.net/AMR.845.652

    Article  Google Scholar 

  46. Ribeiro, M., Ellerbroek, J., Hoekstra, J.: Review of conflict resolution methods for manned and unmanned aviation. Aerospace 7(6), 79 (2020). https://doi.org/10.3390/aerospace7060079

    Article  Google Scholar 

  47. Schwab, K., Snabe, J. H., Eide, E.B., Blanke, J., Moavenzadeh, J.: Margareta Drzeniek-Hanouz. The Travel & Tourism Competitiveness Report. World Economic Forum (2015).

  48. Stollenwerk, T., et al.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297 (2020). https://doi.org/10.1109/TITS.2019.2891235

    Article  MathSciNet  Google Scholar 

  49. Straffin, P.D.: Game Theory and Strategy, vol. 36. Mathematical Association of America, Washington (1993)

    MATH  Google Scholar 

  50. Sunil, E., Ellerbroek, J., Hoekstra, J.M.: CAMDA: capacity assessment method for decentralized air traffic control. In: International Conference on Research in Air Transportation (2018)

  51. Sunil, E., Ellerbroek, J., Hoekstra, J., Maas, J.: Modeling airspace stability and capacity for decentralized separation. In: 12th Seminar Papers: 12th USA/Europe Air Traffic Management Research and Development Seminar (2017). https://pure.tudelft.nl/ws/portalfiles/portal/31445060/12th_ATM_RD_Seminar_paper_67.pdf

  52. Sunil, E., et al.: Analysis of airspace structure and capacity for decentralized separation using fast-time simulations. J. Guid. Control. Dyn. 40(1), 38–51 (2016). https://doi.org/10.2514/1.g000528

    Article  Google Scholar 

  53. Sutorius, M., Panagou, D.: Decentralized hybrid control for multi-agent motion planning and coordination in polygonal environments. IFAC-PapersOnLine 50(1), 6977–6982 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1339

    Article  Google Scholar 

  54. Tarnopolskaya, T., Fulton, N.: Synthesis of optimal control for cooperative collision avoidance for aircraft (Ships) with unequal turn capabilities. J. Optim. Theory Appl. 144(2), 367–390 (2010). https://doi.org/10.1007/s10957-009-9597-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Tolstaya, E., Ribeiro, A., Kumar, V., Kapoor, A.: Inverse optimal planning for air traffic control. In: IEEE International Conference on Intelligent Robots and Systems, pp. 7535–7542 (2019). https://doi.org/10.1109/IROS40897.2019.8968460

  56. Tran, N.P., Pham, D., Goh, S.K., Alam, S., Duong, V.: An intelligent interactive conflict solver incorporating air traffic controllers’ preferences using reinforcement learning. In: 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), pp. 1–8 (2019). https://doi.org/10.1109/ICNSURV.2019.8735168

  57. Volpe Lovato, A., Hora Fontes, C., Embiruçu, M., Kalid, R.: A fuzzy modeling approach to optimize control and decision making in conflict management in air traffic control. Comput. Ind. Eng. 115, 167–189 (2018). https://doi.org/10.1016/j.cie.2017.11.008

    Article  Google Scholar 

  58. Wolfe, S.R., Jarvis, P.A., Enomoto, F. Y., Sierhuis, M., van Putten, B.-J.: A multi-agent simulation of collaborative air traffic flow management, pp. 357–381 (2009). https://doi.org/10.4018/978-1-60566-226-8.ch018

  59. Wollkind, S., Valasek, J., Ioerger, T.: Automated conflict resolution for air traffic management using cooperative multiagent negotiation. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2004). https://doi.org/10.2514/6.2004-4992

  60. Yang, X., Deng, L., Wei, P.: Multi-agent autonomous on-demand free flight operations in urban air mobility. In: AIAA Aviation 2019 Forum, pp. 1–13 (2019). https://doi.org/10.2514/6.2019-3520.

  61. Yildiz, Y., Agogino, A., Brat, G.: Predicting pilot behavior in medium-scale scenarios using game theory and reinforcement learning. J. Guid. Control. Dyn. 37(4), 1335–1343 (2014). https://doi.org/10.2514/1.G000176

    Article  Google Scholar 

  62. Yildiz, Y., Lee, R., Brat, G.: Using game theoretic models to predict pilot behavior in nextgen merging and landing scenario. In: AIAA modeling and simulation technologies conference, pp. 1–8 (2012). https://doi.org/10.2514/6.2012-4487

  63. Zhang, Y., Su, R., Sandamali, G.G.N., Zhang, Y., Cassandras, C.G., Xie, L.: A Hierarchical heuristic approach for solving air traffic scheduling and routing problem with a novel air traffic model. IEEE Trans. Intell. Transp. Syst. 20(9), 3421–3434 (2019). https://doi.org/10.1109/TITS.2018.2874235

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded in part by the Federal Aviation Administration through its Air Transportation Centers of Excellence (CoE) in Technical Training and Human Performance (TTHP) with award 16-C-TTHP-OK-021. The FAA has sponsored this project through the Center of Excellence for Technical Training and Human Performance. However, the agency neither endorses nor rejects the findings of this research. The presentation of this information is in the interest of invoking technical community comment on results and conclusions of the research. The authors further acknowledge the contributions of the following individuals from the University of Oklahoma: Nafiseh Ghorbani-Renani, graduate students in the School of Industrial and Systems, S. Lakshmivarahan, Professor in the School of Computer Science, and Robert G. Wood, Assistant Director of the FAA CoE TTHP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kash Barker.

Additional information

Communicated by Kyriakos G. Vamvoudakis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangrazjeddi, A., González, A.D. & Barker, K. Applied Game Theory to Enhance Air Traffic Control in 3D Airspace. J Optim Theory Appl 196, 1125–1154 (2023). https://doi.org/10.1007/s10957-023-02165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02165-9

Keywords

Navigation