Skip to main content
Log in

Dynamic Optimization of Large-Population Systems with Partial Information

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the dynamic optimization of large-population system with partial information. The associated mean-field game is formulated, and its consistency condition is equivalent to the wellposedness of some Riccati equation system. The limiting state-average is represented by a mean-field stochastic differential equation driven by the common Brownian motion. The decentralized strategies with partial information are obtained, and the approximate Nash equilibrium is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A., Sung, K., Yam, S., Yung, S.: Linear-quadratic mean-field games. arXiv preprint, arXiv:1404.5741 (2014)

  3. Huang, M., Caines, P.E., Malhamé, P.P.: Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behavior and decentralized \(\varepsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    Article  Google Scholar 

  4. Huang, M., Caines, P.E., Malhamé, P.P.: Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Autom. Control 57, 1736–1751 (2012)

    Article  Google Scholar 

  5. Huang, M.: Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 48, 3318–3353 (2010)

    Article  MATH  Google Scholar 

  6. Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64, 197–216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Meyer-Brandis, T., Øksendal, B., Zhou, X.Y.: A mean-field stochastic maximum principle via Malliavin calculus. Stochastics 84, 643–666 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51, 2809–2838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  10. Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  11. Baghery, F., Øksendal, B.: A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25, 705–717 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baras, J., Elliott, R., Kohlmann, M.: The partially observed stochastic minimum principle. SIAM J. Control Optim. 27, 1279–1292 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, G., Wu, Z.: The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 54, 1230–1242 (2009)

    Article  Google Scholar 

  14. Huang, M., Caines, P.E., Malhamé, P.P.: Distributed multi-agent decision-making with partial observations: asymptotic Nash equilibria. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006)

  15. Delarue, F., Carmona, R.: Probabilistic Approach for Mean Field Games with a Common Noise. Mean Field Games and Related Topics, Padova (2013)

  16. Peng, S., Wu, Z.: Fully coupled forward–backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37, 825–843 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51, 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, J., Yong, J.: Forward–Backward Stochastic Differential Equations and Their Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Antonelli, F.: Backward–forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the financial support from RGC Earmarked Grants 500613, 502412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Huang.

Additional information

Communicated by Mauro Pontani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, S. Dynamic Optimization of Large-Population Systems with Partial Information. J Optim Theory Appl 168, 231–245 (2016). https://doi.org/10.1007/s10957-015-0740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0740-x

Keywords

Mathematics Subject Classification

Navigation