Skip to main content
Log in

Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the last decades, heuristic techniques have become established as suitable approaches for solving optimal control problems. Unlike deterministic methods, they do not suffer from locality of the results and do not require any starting guess to yield an optimal solution. The main disadvantages of heuristic algorithms are the lack of any convergence proof and the capability of yielding only a near optimal solution, if a particular representation for control variables is adopted. This paper describes the indirect swarming method, based on the joint use of the analytical necessary conditions for optimality, together with a simple heuristic technique, namely the particle swarm algorithm. This methodology circumvents the previously mentioned disadvantages of using heuristic approaches, while retaining their advantageous feature of not requiring any starting guess to generate an optimal solution. The particle swarm algorithm is chosen among the different available heuristic techniques, due to its apparent simplicity and the recent promising results reported in the scientific literature. Two different orbital maneuvering problems are considered and solved with great numerical accuracy, and this testifies to the effectiveness of the indirect swarming algorithm in solving low-thrust trajectory optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miele, A., Mancuso, S.: Optimal trajectories for Earth-Moon-Earth flight. Acta Astron. 49(2), 59–71 (2001)

    Article  Google Scholar 

  2. Miele, A., Wang, T.: Optimal trajectories for Earth-to-Mars flight. J. Optim. Theory Appl. 95(3), 467–499 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 1: Algorithm structure. J. Optim. Theory Appl. 116(1), 1–17 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 2: Application to a multistage launch vehicle design. J. Optim. Theory Appl. 116(1), 19–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown, K.R., Harrold, E.F., Johnson, G.W.: Rapid Optimization of Multiple-Burn Rocket Flights. NASA CR 1430 (1969)

  6. Brusch, R.G., Vincent, T.L.: Numerical implementation of a second-order variational endpoint condition. AIAA J. 8, 2230–2235 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kluever, C.A., Pierson, B.L.: Optimal low-thrust Earth-Moon three-dimensional trajectories. J. Guid. Control Dyn. 18, 830–837 (1995)

    Article  Google Scholar 

  8. Hull, D.: Initial Lagrange multipliers for the shooting method. J. Guid. Control Dyn. 31(5), 1490–1492 (2008)

    Article  Google Scholar 

  9. McAdoo, S., Jezewski, D.J., Dawkins, G.S.: Development of a Method for Optimal Maneuver Analysis of Complex Space Missions. NASA TN D-7882 (1975)

  10. Redding, D.C.: Optimal Low-Thrust Transfers to Geosynchronous Orbits. Stanford University Guidance and Control Lab, report SUDAAR 539, Stanford (1983)

  11. Betts, J.D.: Optimal interplanetary orbit transfers by direct transcription. J. Astronaut. Sci. 42, 247–326 (1994)

    Google Scholar 

  12. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  MATH  Google Scholar 

  13. Enright, P.J., Conway, B.A.: Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming. J. Guid. Control Dyn. 14, 981–985 (1991)

    Article  Google Scholar 

  14. Seywald, H.: Trajectory optimization based on differential inclusion. J. Guid. Control Dyn. 17, 480–487 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coverstone-Carroll Williams, S.N.: Optimal low thrust trajectories using differential inclusion concepts. J. Astronaut. Sci. 42, 379–393 (1994)

    Google Scholar 

  16. Zondervan, K.P., Wood, L.J., Caughey, T.K.: Optimal low-thrust, three-burn orbit transfers with large plane changes. J. Astronaut. Sci. 32, 407–427 (1984)

    Google Scholar 

  17. Gao, Y., Kluever, C.: Low-thrust interplanetary orbit transfer using hybrid trajectory optimization method with multiple shooting. Paper AIAA 2004-5088 (2004)

  18. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152, 271–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  20. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  21. Pontani, M., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Chapter  Google Scholar 

  23. Venter, G., Sobieszczanski-Sobieski, J.: Particle swarm optimization. AIAA J. 41(8), 1583–1589 (2003)

    Article  Google Scholar 

  24. Eberhart, R.C., Shi, Y.: Comparison Between Genetic Algorithms and Particle Swarm Optimization. Evolutionary Programming VII. Lecture Notes in Computer Science, vol. 1447, pp. 611–616. Springer, Berlin (1998)

    Google Scholar 

  25. Parsopoulos, K.E., Vrahatis, N.M.: On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 211–224 (2004)

    Article  MathSciNet  Google Scholar 

  26. Pontani, M., Conway, B.A.: Swarming Theory Applied to Space Trajectory Optimization. Spacecraft Trajectory Optimization, pp. 263–293. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  27. Pontani, M., Conway, B.A.: Particle swarm optimization applied to impulsive orbital transfers. Acta Astron. 74, 141–155 (2012)

    Article  Google Scholar 

  28. Pontani, M., Ghosh, P., Conway, B.A.: Particle swarm optimization of multiple-burn rendezvous trajectories. J. Guid. Control Dyn. 35(4), 1192–1207 (2012)

    Article  Google Scholar 

  29. Bryson, A.E., Ho, Y.C.: Applied Optimal Control, pp. 71–89. Hemisphere, New York (1975)

    Google Scholar 

  30. Hull, D.: Optimal Control Theory for Applications, pp. 247–257. Springer, New York (2003)

    MATH  Google Scholar 

  31. Hu, X., Shi, Y., Eberhart, R.: Recent advances in particle swarm. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), Portland, OR, pp. 90–97 (2004)

    Google Scholar 

  32. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

    Article  Google Scholar 

  33. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  34. Hull, D.G.: Optimal guidance for quasi-planar lunar ascent. J. Optim. Theory Appl. 151(2), 353–372 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hull, D.G., Harris, M.W.: Optimal solutions for quasi-planar ascent over a spherical moon. J. Guid. Control Dyn. 35(4), 1018–1023 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pontani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontani, M., Conway, B. Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method. J Optim Theory Appl 162, 272–292 (2014). https://doi.org/10.1007/s10957-013-0471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0471-9

Keywords

Navigation