Skip to main content
Log in

Sensitivity Analysis of Merit Function in Solving Nonlinear Equations by Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

To solve nonlinear equations by an optimization method, scaling is very important. Two types of poor scaling where: (a) the variables differ greatly in magnitude; (b) the merit function of system is highly sensitive to small changes in certain variables and relatively insensitive to changes in other variables. If poor scaling is ignored, the algorithm may produce solutions with poor quality. To solve (a), we can change units of variables. A numerical solution of the nonlinear equations produced by the finite volume method in the forced convective heat transfer of a nanofluid, as a case study, indicates that the poor scaling (b) is solved by using the Euclidean norm of columns of the Jacobian matrix as scaling data, while some researchers proposed diagonal elements of the Hessian matrix as scaling data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics. SIAM, Philadelphia (1987)

    Google Scholar 

  3. Özerinç, S., Kakaç, S., Yazıcıoğlu, A.G.: Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid. Nanofluid. 8, 145–170 (2010)

    Article  Google Scholar 

  4. Wang, X., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)

    Article  MATH  Google Scholar 

  5. Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  MATH  Google Scholar 

  6. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  7. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics the Finite Volume Method. Longman Scientific & Technical, Harlow (1995)

    Google Scholar 

  8. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, Wiley, New York (2007)

    Google Scholar 

  9. Brady, J.F., Khair, A.S., Swaroop, M.: On the bulk viscosity of suspensions. J. Fluid Mech. 554, 109–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhou, S.Q., Ni, R.: Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett. 92(9), 0931231 (2008)

    Google Scholar 

  11. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, C.T., Desgranges, F., Galanis, N., Roya, G., Maréd, T., Boucher, S., Angue Mintsa, H.: Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci. 47, 103–111 (2008)

    Article  Google Scholar 

  13. Li Calvin, H., Peterson, G.P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99, 084314 (2006)

    Article  Google Scholar 

  14. Pathipakka, G., Sivashanmugam, P.: Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow. Superlattices Microstruct. 47, 349–360 (2010)

    Article  Google Scholar 

  15. Kays, W.M., Crawford, M.E.: Convective Heat and Mass Transfer. McGraw-Hill, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Kalbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimi, S.S., Kalbasi, M. & Sadeghifar, H. Sensitivity Analysis of Merit Function in Solving Nonlinear Equations by Optimization. J Optim Theory Appl 162, 191–201 (2014). https://doi.org/10.1007/s10957-013-0439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0439-9

Keywords

Navigation