Skip to main content
Log in

High-Order \(\mathcal{D}^{\alpha}\)-Type Iterative Learning Control for Fractional-Order Nonlinear Time-Delay Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents a high-order \(\mathcal{D}^{\alpha}\)-type iterative learning control (ILC) scheme for a class of fractional-order nonlinear time-delay systems. First, a discrete system for \(\mathcal{D}^{\alpha}\)-type ILC is established by analyzing the control and learning processes, and the ILC design problem is then converted to a stabilization problem for this discrete system. Next, by introducing a suitable norm and using a generalized Gronwall–Bellman Lemma, the sufficiency condition for the robust convergence with respect to the bounded external disturbance of the control input and the tracking errors is obtained. Finally, the validity of the method is verified by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations, pp. 12–18. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Hilfer, R.: Application of Fractional Calculus in Physics, pp. 22–24. World Scientific, Singapore (2000)

    Book  Google Scholar 

  3. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.: Fractional-Order Systems and Controls: Fundamentals and Applications, pp. 431–438. Springer, New York (2010)

    Book  MATH  Google Scholar 

  4. Li, Y., Chen, Y.Q., Ahn, H.S.: Fractional-order iterative learning control for fractional-order linear systems. Asian J. Control 13(1), 54–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Luo, Y., Chen, Y.Q.: Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 45, 2446–2450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91, 386–426 (2011)

    Article  MATH  Google Scholar 

  7. Lan, Y.H., Huang, H.X., Zhou, Y.: Observer-based robust control of 0≤α<1 fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl. 6, 229–234 (2012)

    Article  MathSciNet  Google Scholar 

  8. Xu, J.X., Tan, Y.: Linear and Nonlinear Iterative Learning Control, pp. 47–51. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Ahn, H.S., Moore, K.L., Chen, Y.Q.: Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems, pp. 38–48. Springer, London (2007)

    MATH  Google Scholar 

  10. Hoelzle, D.J., Alleyne, A.G., Johnson, A.: Basis task approach to iterative learning control with applications to micro/robotic deposition. IEEE Trans. Control Syst. Technol. 19(5), 1138–1148 (2011)

    Article  Google Scholar 

  11. Ruan, X., Bien, Z.Z., Wang, Q.: Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue norm. IET Control Theory Appl. 6, 707–714 (2012)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y.Q., Moore, K.L.: On D α-type iterative learning control. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, pp. 32–37 (2001)

    Google Scholar 

  13. Lazarevic, M.P.: PD α-type iterative learning control for fractional LTI system. In: Proceedings of the 16th International Congress of Chemical and Process Engineering, Prague, Czech Republic, pp. 271–275 (2004)

    Google Scholar 

  14. Li, Y., Ahn, H.-S., Chen, Y.Q.: Iterative learning control of a class of fractional order nonlinear systems. In: 2010 IEEE International Symposium on Intelligent Control, Yokohama, Japan, pp. 779–783 (2010)

    Chapter  Google Scholar 

  15. Sun, M., Wang, D., Wang, Y.: Varying-order iterative learning control against perturbed initial conditions. J. Franklin Inst. 347, 1526–1549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, Y., Chen, Y.Q., Pi, Y.G.: Dynamic high order periodic adaptive learning compensator for cogging effect in permanent magnet synchronous motor servo system. IET Control Theory Appl. 5, 669–680 (2011)

    Article  MathSciNet  Google Scholar 

  17. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768–1777 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of P.R. China (61104072, 10971173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, YH., Zhou, Y. High-Order \(\mathcal{D}^{\alpha}\)-Type Iterative Learning Control for Fractional-Order Nonlinear Time-Delay Systems. J Optim Theory Appl 156, 153–166 (2013). https://doi.org/10.1007/s10957-012-0231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0231-2

Keywords

Navigation