Skip to main content

Advertisement

Log in

Integrating History of Science in Science Education through Historical Microworlds to Promote Conceptual Change

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a new way to integrate history of science in science education to promote conceptual change by introducing the notion of historical microworld, which is a computer-based interactive learning environment respecting historic conceptions. In this definition, “interactive” means that the user can act upon the virtual environment by changing some parameters to see what ensues. “Environment respecting historic conceptions” means that the “world” has been programmed to respect the conceptions of past scientists or philosophers. Three historical microworlds in the field of mechanics are presented in this article: an Aristotelian microworld respecting Aristotle’s conceptions about movement, a Buridanian microworld respecting the theory of impetus and, finally, a Newtonian microworld respecting Galileo’s conceptions and Newton’s laws of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Aristotle (2002). Physique. Flammarion, Paris

    Google Scholar 

  • Arons, A. B. (1989). What science should we teach? In The Biological Science Curriculum Study (Ed.), Curriculum development for the year 2000 (pp. 13–20). A BSCS Thirtieth Anniversary Symposium, Colorado College, Colorado

  • Arons A. B. (1991). Historical and philosophical perspectives attainable in introductory physics course. In: Matthews M. R. (ed) History, Philosophy, and Science Teaching. OISE Press, Toronto, pp. 169–184

    Google Scholar 

  • Confrey J. (1990). A review of the research on student conceptions in mathematics, science, and programming. In: Cazden C. B. (ed) Review of Research in Education, 16. American Educational Research Association, Washington, pp. 3–56

    Google Scholar 

  • diSessa, A. A. (1982). Unlearning aristotelian physics: a study of knowledge-based learning. Cognitive Science 6: 37–75

    Article  Google Scholar 

  • diSessa A. A. (1986). Artificial worlds and real experience. Instructional Science 14: 207–227

    Article  Google Scholar 

  • diSessa A. A. (1993). Toward an epistemology of physics. Cognition and Instruction 10: 105–225

    Article  Google Scholar 

  • Driver R., Easley J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education 5: 61–84

    Google Scholar 

  • Dugas R. (1950). Histoire de la mécanique. Éditions du Griffon Neuchâtel, Paris

    Google Scholar 

  • Gabel D., Sherwood R., Enochs L. (1984). Problem-solving skills of high school chemistry students. Journal of Research in Science Education 21: 221–233

    Google Scholar 

  • Gingras Y., Keating P., Limoges C. (1998). Du scribe au savant: les porteurs du savoir de l’Antiquité à la révolution industrielle. Les Éditions du Boréal, Montréal

    Google Scholar 

  • Härtel H. (2000). xyZET: a simulation program for physics teaching. Journal of Science Education and Technology 9: 275–286

    Article  Google Scholar 

  • Horwitz P., Barowy B. (1994). Designing and using open-ended software to promote conceptual change. Journal of Science Education and Technology 3: 161–185

    Article  Google Scholar 

  • Goulard, B. (2000). Évolution des concepts en physique. Notes de cours non publiées

  • Legendre M.-F. (1995). Analyse d’une activité d’apprentissage en physique à l’aide du modèle de l’équilibration. Revue des sciences de l’éducation 21: 473–502

    Google Scholar 

  • Legendre M.-F. (1997). Task analysis and validation for a qualitative, exploratory curriculum in force and motion. Instructional Science 25: 255–305

    Article  Google Scholar 

  • Lin H.-S., Hung F.-Y., Hung S.-C. (2002). Using the history of science to promote students’ problem-solving. International Journal of Science Education 25: 453–464

    Article  Google Scholar 

  • Liu X. (2001). Synthetizing research in student conceptions in science. International Journal of Science Education 23: 55–81

    Article  Google Scholar 

  • Masson, S. (2005). Effets de l’utilisation de micromondes historiques sur les processus de changement conceptuel en sciences. Unpublished M.A. Thesis, Département de didactique, Université de Montréal, Montréal, Canada

  • Matthews, M.-R. (1990). History, philosophy and science teaching: a rapprochement. Studies in Science Education 18: 25–51.

    Google Scholar 

  • Matthews M. R. (1994). Science Teaching: The Role of History and Philosophy of Science. Routhledge, New York

    Google Scholar 

  • Matthews M. R. (1998). The nature of science and science teaching. In: Tobin F. (ed) International Handbook of Science Education. Kluwer Academic Publishers, Great Britain, pp. 981–999

    Google Scholar 

  • Matthews M. R. (2000). Time for Science Education: How Teaching History and Philosophy of Pendulum Motion Can Contribute to Science Literacy. Kluwer Academic, New York

    Google Scholar 

  • Matthews M. R. (2001a). How pendulum studies can promote knowledge of the nature of science. Journal of Science Education and Technology 10: 359–368

    Article  Google Scholar 

  • Matthews M. R. (2001b). Methodology and politics in science: The fate of Huygens’ 1673 proposal of seconds pendulum as an international standard of length and some educational suggestions. Science & Education 10: 119–135

    Article  Google Scholar 

  • Metz K. E., Hammer D. M. (1993). Learning physics in a computer microworld: In what sense a world? Interactive Learning Environments 3: 55–76

    Google Scholar 

  • Monk M., Osborne J. (1997). Placing the history and philosophy of science on the curriculum: a model for the development of pedagogy. Science Education 81: 405–424

    Article  Google Scholar 

  • Nakhleh M. B., Mitchell R. C. (1993). Concept learning versus problem solving, there is a difference. Journal of Chemical Education 70: 190–192

    Article  Google Scholar 

  • Nersessian N. J. (1991). Conceptual change in science and in science education. In: Matthews M. R. (ed) History, Philosophy and Science Teaching. Teachers College Press, Toronto, pp. 126–142

    Google Scholar 

  • Papert S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Book, Inc, New York

    Google Scholar 

  • Posner G. J., Strike K. A., Hewson P. W., Gertzog W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66: 211–227

    Article  Google Scholar 

  • Potvin, P. (2002). Regard épistémique sur une évolution conceptuel en physique au secondaire. Thèse, Université de Montréal

  • Richards J., Barowy W., Levin D. (1992). Computer simulations in the science classroom. Journal of Science Education and Technology 1: 67–79

    Article  Google Scholar 

  • Rosmorduc J. (1979). Histoire de la physique et de la chimie de Thalès à Einstein. Paris, Éditions Études Vivantes

    Google Scholar 

  • Roth W.-M. (1996). The co-evolution of situated language and physics knowing. Journal of Science Education and Technology 5: 171–191

    Article  Google Scholar 

  • Sequeria M., Leite L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education 75: 46–56

    Google Scholar 

  • Snir J., Smith C., Grosslight L. (1993). Conceptually enhanced simulations: A computer tool for science teaching. Journal of Science Education and Technology 2: 373–388

    Article  Google Scholar 

  • Viennot L. (1979). Spontaneous reasoning in elementary dynamics. International Journal of Science Education 1: 205–221

    Google Scholar 

  • Vosniadou S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction 4: 45–69

    Article  Google Scholar 

  • Wandersee J. H. (1990). On the value and use of the history of science in teaching today’s science: constructing historical vignettes. In: Herget D. E. (eds. More History and Philosophy of Science In Science Teaching: Proceedings of the First International Conference. Florida State University, Tallahassee, pp. 277–283

    Google Scholar 

  • Wandersee J. H. (1992). The historicality of cognition: implications for science education research. Journal of Research in Science Teaching 29: 423–434

    Article  Google Scholar 

  • Wandersee J. H., Mintzes J. J., Novak J. D. (1994). Research on alternative conceptions in science. In: Gabel D. L. (eds) Handbook of Research on Science Teaching and Learning. New York, Macmillan, pp. 177–210

    Google Scholar 

  • Wandersee J. H., Roach L. M. (1998). Interactive historical vignettes. In: Mintzes J. J., Wandersee J. H., Novak J. D. (eds) Teaching Science for Understanding: A human Constructivist View. Academic Press, San Diego, pp. 281–306

    Google Scholar 

  • White B., Horwitz P. (1988). Computer microworlds and conceptual change: A new approach to science education. In: Ramsden P. (ed) Improving Learning: New Perspectives. Kogan Page, London, pp. 69–80

    Google Scholar 

  • White B. Y. (1992). A microworld-based approach to science education. In: Scanlon E., O’Shea T. (eds) New Directions in Educational Technology. Springer-Verlag, New York, pp. 227–242

    Google Scholar 

  • White B. Y. (1998). Computer microworlds and scientific inquiry: An alternative approach to Science Education. In: Fraser B. J., Tobin K. G. (eds) International Handbook of Science Education. Kluwer Academic Publishers, Great Britain, pp. 295–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Masson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, S., Vázquez-Abad, J. Integrating History of Science in Science Education through Historical Microworlds to Promote Conceptual Change. J Sci Educ Technol 15, 257–268 (2006). https://doi.org/10.1007/s10956-006-9012-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-006-9012-8

Keywords

Navigation