Skip to main content
Log in

Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin–Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466, 2014), which formally fits within Freidlin–Wentzell’s framework with a weak noise proportional to \(1/\sqrt{N}\), where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter \(\lambda \), starting from a known quasi-potential for \(\lambda =0\). In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247–308, 1987; Stochastic differential systems, vol 96, pp 1–10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example of mean field diffusions: the Shinomoto–Kuramoto model of coupled rotators (Prog Theoret Phys 75:1105–1110, [74]). This is one of few systems for which non-equilibrium free energies can be computed and analyzed in an effective way, at least perturbatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Here and below, we use physicists’ notation for stochastic equations rather than mathematicians’ one with differentials.

  2. Since the densities are normalized, functional derivatives \(\delta \mathcal {S}/\delta \rho (x)\) are defined only up to a constant, but such ambiguities drop out in all expressions below where the functional derivatives are integrated against functions with vanishing integral.

  3. This is possible whenever the eigenvalues \(\alpha _k\) are all distinct. We have checked numerically that this is indeed the case.

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Ben Arous, G., Brunaud, M.: Méthode de Laplace: Étude variationnelle des fluctuations de diffusions de type “champ moyen”. Stoch. Stoch. Rep. 31, 79–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barré, J., Chetrite, R., Muratori, M., Peruani, F.: Motility-induced phase separation of active particles in the presence of velocity alignment. J. Stat. Phys. 158, 589–600 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ben Arous, G., Guionnet, A.: Large deviations for langevin spin glass dynamics. Probab. Theory Relat. Fields 102, 455–509 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Arous, G., Guionnet, A.: Symmetric Langevin spin glass dynamics. Ann. Probab. 25, 1367–1422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Preprint arXiv:1404.6466 (2014)

  7. Bouchet, F., Laurie, J., Laurie, J., Zaboronski, O.: Control and instanton trajectories for random transitions in turbulent flows. J. Phys. Conf. Ser. 318(022041), 1–7 (2011)

    Google Scholar 

  8. Bouchet, F., Laurie, J., Zaboronski, O.: Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations. J. Stat. Phys. 156, 1066–1092 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bouchet, F., Nardini, C., Tangarife, T.: Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier–Stokes equations. J. Stat. Phys. 153, 572–625 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bouchet, F., Nardini, C., Tangarife, T.: Stochastic averaging, large deviations and random transitions for the dynamics of 2d and geostrophic turbulent vortices. Fluid Dyn. Res 46(061416), 1–11 (2014)

    MathSciNet  Google Scholar 

  11. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/n limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cameron, M.K.: Finding the quasipotential for nongradient SDEs. Physica D 241, 1532–1550 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chavanis, P.H.: The Brownian mean field model. Eur. Phys. J. B 87, 1–33 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chavanis, P.H.: Thermodynamics of the HMF model with a magnetic field. Eur. Phys. J. B 80, 275–306 (2011)

    Article  ADS  Google Scholar 

  15. Chavanis, P.H.: Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Physica A 387, 5716–5740 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dai Pra, P., den Hollander, F.: Mckean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84, 735–772 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 152. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  18. Dawson, D.A., Gärtner, J.: Large deviations from the Mckean–Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dawson, D.A., Gärtner, J.: Long-time fluctuations of weakly interacting diffusions. In: Engelbert, H., Schmidt, W. (eds.) Stochastic Differential Systems. Lecture Notes in Control and Information Sciences, vol. 96, pp. 1–10. Springer, Berlin (1987)

    Chapter  Google Scholar 

  20. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. Day, M.V., Darden, T.A.: Some regularity results on the Ventcel–Freidlin quasi-potential function. Appl. Math. Optim. 13, 259–282 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dean, D.S.: Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A 29, L613–L617 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  24. den Hollander, F.: Large Deviations. Fields Institute Monographs, vol. 14. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  25. Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13, 115–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dykman, M.I.: Large fluctuations and fluctuational transitions in systems driven by colored Gaussian noise: a high-frequency noise. Phys. Rev. A 42, 2020–2029 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dykman, M.I., Krivoglaz, M.A.: Theory of fluctuational transitions between stable states of nonlinear oscillators. Sov. Phys. JETP 50, 30–37 (1979)

    ADS  Google Scholar 

  28. Dykman, M.I., Krivoglaz, M.A.: Fluctuations in nonlinear systems near bifurcations corresponding to the appearance of new stable states. Physica A 104, 480–494 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  30. Faris, W.G., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025–3055 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  32. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260, 3rd edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  33. Gang, H., Haken, H.: Polynomial expansion of the potential of Fokker–Planck equations with a noninvertible diffusion matrix. Phys. Rev. A 40, 5966–5978 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  34. Giacomin, G., Pakdaman, K., Pellegrin, X., Poquet, C.: Transitions in active rotator systems: invariant hyperbolic manifold approach. SIAM J. Math. Anal. 44, 4165–4194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Giacomin, G., Poquet, C.: Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Braz. J. Probab. Stat. 29, 460–493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Graham, R.: Macroscopic potentials, bifurcations and noise in dissipative systems. In: Moss, F., McClintock, P.V.E. (eds.) Noise in Nonlinear Dynamical Systems, vol. 1, pp. 225–278. Cambridge University Press, Cambridge (1989)

    Chapter  Google Scholar 

  37. Graham, R.: Fluctuations in the steady state. In: Brey, J.J., Marro, J., Rubí, J.M., San Miguel, M. (eds.) 25 Years of Non-Equilibrium Statistical Mechanics, pp. 125–134. Springer, New York (1995)

    Chapter  Google Scholar 

  38. Graham, R., Roekaerts, D., Tél, T.: Integrability of Hamiltonians associated with Fokker–Planck equations. Phys. Rev. A 31, 3364–3375 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. Graham, R., Schenzle, A.: Non-equilibrium potentials and stationary probability distributions of some dissipative models without manifest detailed balance. Zeit. Phys. B 52, 61–68 (1983)

    Article  ADS  Google Scholar 

  40. Graham, R., Tél, T.: Existence of a potential for dissipative dynamical systems. Phys. Rev. Lett. 52, 9–12 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  41. Graham, R., Tél, T.: On the weak-noise limit of Fokker–Planck models. J. Stat. Phys. 35, 729–748 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Graham, R., Tél, T.: Weak-noise limit of Fokker–Planck models and nondifferentiable potentials for dissipative dynamical systems. Phys. Rev. A 31, 1109–1122 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  43. Graham, R., Tél, T.: Nonequilibrium potential for coexisting attractors. Phys. Rev. A 32, 1322–1337 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  44. Graham, R., Tél, T.: Nonequilibrium potentials for local codimension-2 bifurcations of dissipative flows. Phys. Rev. A 35, 1328–1349 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. Grunwald, M.: Sanov results for Glauber spin-glass dynamics. Probab. Theory Relat. Fields 106, 187–232 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: a least action principle on the space of curves. Commun. Pure Appl. Math. 61, 1052–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ilyashenko, Yu., Yakovenko, S.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. AMS, Providence, RI (2008)

    MATH  Google Scholar 

  50. Irvin, M.C.: Smooth Dynamical Systems. Advanced Series in Nonlinear Dynamics. World Scientific, Singapore (2001)

    Google Scholar 

  51. Jauslin, H.R.: Melnikov’s criterion for nondifferentiable weak-noise potentials. J. Stat. Phys. 42, 573–585 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  52. Jauslin, H.R.: Nondifferentiable potentials for nonequilibrium steady states. Physica A 144, 179–191 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Jouvet, B., Phythian, R.: Quantum aspects of classical and statistical fields. Phys. Rev. A 19, 1350–1355 (1979)

    Article  ADS  Google Scholar 

  54. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. International Series of Monographs on Physics, vol. 113, 4th edn. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  55. Kamenev, A.: Field Theory of Non-equilibrium Systems. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  56. Kitagawa, G.: An algorithm for solving the matrix equation \(X= FXF^T+S\). Int. J. Control 25, 745–753 (1977)

    Article  MATH  Google Scholar 

  57. Knobloch, E., Wiesenfeld, K.A.: Bifurcations in fluctuating systems: the center-manifold approach. J. Stat. Phys. 33, 611–637 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, pp. 420–422. Springer, Berlin (1975)

    Chapter  Google Scholar 

  59. Laurie, J., Bouchet, F.: Computation of rare transitions in the barotropic quasi-geostrophic equations. New J. Phys. 17(015009), 1–25 (2015)

    Google Scholar 

  60. Luçon, E., Poquet, C.: Long time dynamics and disorder-induced traveling waves in the stochastic Kuramoto model. Preprint arXiv:1505.00497 (2015)

  61. Machlup, S., Onsager, L.: Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 91, 1512–1515 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Maier, R.S., Stein, D.L.: Escape problem for irreversible systems. Phys. Rev. E 48, 931–938 (1993)

    Article  ADS  Google Scholar 

  63. Maier, R.S., Stein, D.L.: A scaling theory of bifurcations in the symmetric weak-noise escape problem. J. Stat. Phys. 83, 291–357 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Mangel, M.: Uniform treatment of fluctuations at critical points. Physica A 97, 597–615 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  65. Martin, P.C., Siggia, E.D., Rose, H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)

    Article  ADS  Google Scholar 

  66. McKean Jr., H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl Acad. Sci. USA 56, 1811–1907 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  67. Méléard, S.: Asymptotic behaviour of some interacting particle systems: McKean–Vlasov and Boltzmann models. Probabilistic Models for Nonlinear PDE, pp. 42–92. Springer, Berlin (1996)

    Google Scholar 

  68. Nardini, C., Gupta, S., Ruffo, S., Dauxois, T., Bouchet, F.: Kinetic theory for non-equilibrium stationary states in long-range interacting systems. J. Stat. Mech. L01002, 1–11 (2012)

    Google Scholar 

  69. Nardini, C., Gupta, S., Ruffo, S., Dauxois, T., Bouchet, F.: Kinetic theory of nonequilibrium stochastic long-range systems: phase transition and bistability. J. Stat. Mech. P12010, 1–28 (2012)

    MathSciNet  Google Scholar 

  70. Ohta, H., Sasa, S.: Critical phenomena in globally coupled excitable elements. Phys. Rev. E 78(065101(R)), 1–4 (2008)

    Google Scholar 

  71. Pikovsky, A., Rosenblum, M.: Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D 240, 872–881 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Poquet, C.: Phase reduction in the noise induced escape problem for systems close to reversibility. Stoch. Process. Appl. 124, 3312–3341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sakaguchi, H., Shinomoto, S., Kuramoto, Y.: Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Prog. Theoret. Phys. 79, 600–607 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  74. Shinomoto, S., Kuramoto, Y.: Phase transitions in active rotator systems. Prog. Theoret. Phys. 75, 1105–1110 (1986)

    Article  ADS  Google Scholar 

  75. Smelyanskiy, V.N., Dykman, M.I., Rabitz, H., Vugmeister, B.E.: Fluctuations, escape, and nucleation in driven systems: logarithmic susceptibility. Phys. Rev. Lett. 79, 3113–3116 (1997)

    Article  ADS  Google Scholar 

  76. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  77. Stratonovič, R.L.: On the probability functional of diffusion processes (in Russian). In: Proc. Sixth All-Unian Conf. Theory Prob. and Math. Statist., pp. 471–483, Gosudarstv. Izdat. Politič. i Naučn. Lit. Litovsk. SSR, Vilnius (1962). English translation. In: Selected Transl. in Math. Statist. and Propbability, vol. 10, pp. 273–286, AMS (1971)

  78. Stroock, D.W., Varadhan, S.R.S.: Diffusion processes. In: Proceedings of Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 3, pp. 361–368, University of California Press (1972)

  79. Sznitman, A.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX 1989, pp. 165–251. Springer, Berlin (1991)

  80. Tél, T., Graham, R., Hu, G.: Nonequilibrium potentials and their power-series expansions. Phys. Rev. A 40, 4065–4071 (1989)

    Article  ADS  Google Scholar 

  81. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence, RI (2012)

    MATH  Google Scholar 

  82. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  83. Zaks, M.A., Neiman, A.B., Feistel, S., Schimansky-Geier, L.: Noise-controlled oscillations and their bifurcations in coupled phase oscillators. Phys. Rev. E 68(066206), 1–9 (2003)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to J. Barré, P.-H. Chavanis, R. Chetrite and H. Touchette for useful discussions and for providing numerous references to the literature. The latter were also provided by the anonymous referees whom we thank for that contribution and for critical comments. C. Nardini acknowledges several discussions with M. Cates in the final stage of this work. This research, and the position of C. Nardini, were funded through the ANR Grant ANR STOSYMAP (ANR-2011-BS01-015), and partially (C. Nardini) by the EPSRC Grant No. EP/J007404. F. Bouchet acknowledges funding from the European Research Council under European Union’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 616811)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Nardini.

Appendices

Appendix 1: Smooth Stationary Solutions of the Shinomoto–Kuramoto Model at \(T=0\)

In Sect. 4.3.4, we have discussed simple delta-like stationary solutions of the McKean–Vlasov dynamics for the Shinomoto–Kuramoto model at \(T=0\). They described the particles accumulated at the fixed point of single particle drift. These are however not the only stationary solutions for vanishing temperature and also smooth solutions are present, which, however, are linearly unstable in the ferromagnetic model considered in this paper (\(J>0\)). We briefly discuss such smooth stationary solutions at \(T=0\) and their stability in this appendix.

For \(T=0\), Eq. (4.36) implies that

$$\begin{aligned} \rho _{inv}(\theta +\theta _0)=\frac{\sqrt{1-\left( \frac{y}{F}\right) ^2}}{2\pi \left( 1-\frac{y}{F}\sin \theta \right) } \end{aligned}$$
(6.1)

provided that \(0\le y<F\) and the self-consistency relation (4.43) holds taking now the form

$$\begin{aligned} \left( \frac{y}{J}\right) ^2+\bigg (\frac{_{1-\sqrt{1-\left( \frac{y}{F}\right) ^2}}}{^{\frac{y}{F}}}\bigg )^{2}=\left( \frac{h}{J}\right) ^2. \end{aligned}$$
(6.2)

The left hand side of the last equation grows monotonically from 0 at \(y=0\) to \((F/J)^2+1\) at \(y=F\). Hence there is a unique solution for \(0\le y<F\) if and only if \(F^2+J^2> h^2\). We infer that there is a unique stationary smooth solution at \(T=0\) when the latter constraint holds and none otherwise.

To examine the stability of such solutions, we examine the eigenfunctions \(\delta \rho _{\mu }(\theta +\theta _0)\) with vanishing integral of the linearized Fokker–Planck operator \(R_{\rho _{inv}}\) of (4.44) at \(T=0\). We may write \(\delta \rho _{\mu }(\theta +\theta _0) =\partial _{\theta }\delta f_{\mu }(\theta )\), where \(\delta f_{\mu }\) is periodic on \([0,2\pi ]\). The eigenequation takes the form

$$\begin{aligned}&\big (R_{\rho _{inv}}\partial _{\theta }\delta f_{\mu }\big )(\theta )\nonumber \\&\quad =-\partial _{\theta }\Big ((F-y\sin \theta )\, \partial _{\theta }\delta f_{\mu }(\theta ) - Y_1\,\rho _{inv}(\theta +\theta _0)\sin \theta + Y_2\,\rho _{inv}(\theta +\theta _0) \cos \theta \Big )\nonumber \\&\quad =\mu \,\partial _{\theta }\delta f_{\mu },\,\ \end{aligned}$$
(6.3)

where

$$\begin{aligned} Y_1=J\int _0^{2\pi }\sin \theta \,\,\delta f_{\mu }(\theta )\,d\theta ,\qquad Y_2=-J\int _0^{2\pi }\cos \theta \,\,\delta f_{\mu }(\theta )\,d\theta . \end{aligned}$$
(6.4)

We may now define a new operator S such that

$$\begin{aligned} \partial _{\theta }\big (S\,\delta f\big ) =R_{\rho _{inv}}\partial _{\theta }\delta f_{\lambda } . \end{aligned}$$
(6.5)

Explicitly,

$$\begin{aligned} \big (S\,\delta f\big )(\theta )=-(F-y\sin \theta )\,\partial _{\theta }\delta f(\theta ) - Y_1\rho _{inv}(\theta +\theta _0)\,\sin \theta + Y_2\rho _{inv}(\theta +\theta _0) \,\cos \theta .\nonumber \\ \end{aligned}$$
(6.6)

Clearly, the diagonalization of \(R_{\rho _{inv}}\) on the subspace of functions \(\delta g\) with vanishing integral is equivalent to the diagonalization of S.

A direct calculation shows that the 3-dimensional subspace \(V_3\) spanned by functions

$$\begin{aligned} f_1(\theta )=\rho _{inv}(\theta +\theta _0)\,\sin \theta ,\qquad f_2(\theta )=\rho _{inv}(\theta +\theta _0)\,\cos \theta ,\qquad f_3(\theta )=\rho _{inv}(\theta +\theta _0)\nonumber \\ \end{aligned}$$
(6.7)

is invariant for S. In particular, the representation of S on such subspace is given by the matrix

$$\begin{aligned} \left( \begin{array}{ccc} J\,\frac{1-\sqrt{1-\big (\frac{y}{F}\big )^2}}{\big (\frac{y}{F}\big )^2} &{} F &{} J\,\frac{1-\sqrt{1-\big (\frac{y}{F}\big )^2}}{\frac{y}{F}} \\ -F &{} J\Bigg (1-\frac{1-\sqrt{1-\big (\frac{y}{F}\big )^2}}{\big (\frac{y}{F}\big )^2}\Bigg ) &{} -y \\ 0 &{} -y &{} 0 \end{array} \right) . \end{aligned}$$
(6.8)

A little algebra shows that the above matrix has one zero eigenvalue which corresponds to the eigenvector \((-y,0,F)\), i.e. to the constant function

$$\begin{aligned} \delta f(\theta )\,=\,\rho _{inv}(\theta +\theta _0)\,(F-y\sin {\theta })\,=\, \frac{\sqrt{F^2-y^2}}{2\pi } . \end{aligned}$$
(6.9)

In this case \(\delta g=\partial _\theta \delta f=0\). Consequently, the zero eigenvalue does not occur for the operator \(R_{\rho _{inv}}\). The other two eigenvalues of the matrix (6.7) are given by

$$\begin{aligned} \lambda _\pm \,=\,\frac{J}{2}\,\pm \,\sqrt{\left( \frac{J}{2}\right) ^2\,-\,J^2 \frac{_{\sqrt{1-\big (\frac{y}{F}\big )^2}}}{^{\Big (1+\sqrt{1-\big (\frac{y}{F}\big )^2}\Big )^2}}\,-\,F^2+y^2} . \end{aligned}$$
(6.10)

of which at least one has positive real part if \(J>0\). It follows that for \(J>0\), the stationary solution (6.1) is linearly unstable.

Appendix 2: Algorithm for the Taylor Expansion of the Quasi-Potential Close to a Stationary State

We discuss briefly in this Appendix how the Taylor expansion of the quasi-potential of the Shinomoto–Kuramoto model may be numerically calculated. This will be possible, in principle, at all the orders of the Taylor expansion.

Let us first concentrate on the quadratic term \(\mathcal {F}^{(0)}\). In order to explicitly calculate kernel \(\varphi ^0(\theta ,\vartheta )\), we proceed similarly as in Sect. 4.5.3 and consider the eigenfunctions of operators \(R_{\rho _{inv}}^\dagger \) and \(R_{\rho _{inv}}\) acting in space \(H_0\):

$$\begin{aligned} R_{\rho _{inv}}^\dagger u_{k}=\alpha _k\,u_{k}\qquad \text {and}\qquad R_{\rho _{inv}} v_{k}=\overline{\alpha }_k\,v_{k} . \end{aligned}$$
(7.1)

Assuming \(\alpha _k\) to be different, we impose the orthogonality relations (4.99). Eigenfunctions \(u_k\) form a basis of \(H_0\) but they are not orthogonal. Similarly for \(v_k\). The kernel of the quadratic term of the quasi-potential may be represented as

$$\begin{aligned} \varphi ^0(\theta ,\vartheta )=\sum _{k,l}\Phi _{kl}\,v_k(\theta )\, \overline{v_l(\vartheta )}\, \end{aligned}$$
(7.2)

where \(\Phi _{kl}\) is defined by

$$\begin{aligned} \Phi _{kl}= \int _{0}^{2\pi }\overline{u_k(\theta )}\,d\theta \int _{0}^{2\pi } \varphi ^0(\theta ,\vartheta )\,u_l(\vartheta )\,d\vartheta =\langle u_k|\Phi u_l \rangle . \end{aligned}$$
(7.3)

The problem is thus reduced to the calculation of \(\Phi _{kl}\). Now, from Eq. (4.122), we can easily compute the matrix elements of \(\Phi ^{-1}\) in the basis \(u_k\). Indeed, from Eq. (4.122),

$$\begin{aligned} (\Phi ^{-1})_{kl}\equiv \langle u_k|\Phi ^{-1}u_l\rangle = - \frac{2k_BT}{\alpha _k^*+\alpha _l}\int d\theta \, \overline{(\partial _\theta u_k)(\theta )}\,\rho _{inv}(\theta )\, (\partial _\theta u_l)(\theta )\,. \end{aligned}$$
(7.4)

Note, however, that the matrix \((\Phi ^{-1} )_{kl}\) is not the inverse of \(\Phi _{kl}\) because the basis formed by \(u_k\) is not orthonormal. This problem can be handled with simple linear algebra. We introduce the matrix of scalar products

$$\begin{aligned} P_{kl}=\langle u_k|u_l\rangle \end{aligned}$$
(7.5)

whose inverse will be denoted by \((P^{-1})_{kl}\). Then, we construct another matrix

$$\begin{aligned} (B^{-1})_{kl}\equiv \sum _i(P^{-1})_{ki}\,(\Phi ^{-1})_{il}\, \end{aligned}$$
(7.6)

with inverse \(B_{kl}\). Finally,

$$\begin{aligned} \Phi _{kl}=\sum _i P_{ki}\,B_{il} . \end{aligned}$$
(7.7)

Once \(\Phi _{kl}\) is known, it is straightforward to write the kernel \(\varphi ^0\) in the real space using Eq. (4.126).

We conclude by observing that, once \(\varphi ^0\) is known, one could also numerically evaluate the higher order kernels \(\varphi ^n\) of the Taylor expansion by solving Eq. (4.126) using the fact that the basis \(\Phi v_k\) is composed of eigenstates of operators \(K^{(0)\dagger }_r=-\Phi \,R_{\rho _{inv}}\Phi ^{-1}\), see Eqs. (4.123) and (7.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchet, F., Gawȩdzki, K. & Nardini, C. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example. J Stat Phys 163, 1157–1210 (2016). https://doi.org/10.1007/s10955-016-1503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1503-2

Keywords

Navigation