Skip to main content
Log in

Homogeneous Open Quantum Random Walks on a Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study open quantum random walks (OQRWs) for which the underlying graph is a lattice, and the generators of the walk are homogeneous in space. Using the results recently obtained in Carbone and Pautrat (Ann Henri Poincaré, 2015), we study the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process. We study in detail the case of homogeneous OQRWs on the lattice \(\mathbb {Z}^d\), with internal space \(\mathfrak {h}=\mathbb {C}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Attal, S., Guillotin, N., Sabot, C.: Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré (2014)

  2. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147(4), 832–852 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bauer, M., Bernard, D., Tilloy, A.: Open quantum random walks: bistability on pure states and ballistically induced diffusion. Phys. Rev. A 88(6), 062340 (2013)

    Article  ADS  Google Scholar 

  4. Baumgartner, B., Narnhofer, H.: The structures of state space concerning quantum dynamical semigroups. Rev. Math. Phys. 24(2), 1250001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carbone, R., Pautrat, Y.: Open quantum random walks: Reducibility, period, ergodic properties. Ann. Henri Poincaré (2015). doi:10.1007/s00023-015-0396-y

  6. Davies, E.B.: Quantum stochastic processes. II. Commun. Math. Phys. 19, 83–105 (1970)

    Article  ADS  Google Scholar 

  7. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010). Corrected reprint of the second (1998) edition

    Google Scholar 

  8. Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Classics in Mathematics. Springer, Berlin (2006). Reprint of the 1985 original

    Google Scholar 

  9. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on \(C^*\)-algebras. J. Lond. Math. Soc. 17(2), 345–355 (1978)

    Article  Google Scholar 

  10. Fagnola, F., Pellicer, R.: Irreducible and periodic positive maps. Commun. Stoch. Anal. 3(3), 407–418 (2009)

    MathSciNet  Google Scholar 

  11. Groh, U.: The peripheral point spectrum of Schwarz operators on \(C^{\ast } \)-algebras. Math. Z. 176(3), 311–318 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gudder, S.: Quantum Markov chains. J. Math. Phys. 49(7), 072105 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hiai, F., Mosonyi, M., Ogawa, T.: Large deviations and Chernoff bound for certain correlated states on a spin chain. J. Math. Phys. 48(12), 123301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. an introduction. Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School, vol. 95, pp. 213–410 (2012)

  15. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition

    Google Scholar 

  16. Konno, N., Yoo, H.: Limit theorems for open quantum random walks. J. Stat. Phys. 150(2), 299–319 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kraus, K.: States, Effects, and Operations. Lecture Notes in Physics, vol. 190 (1983). Fundamental notions of quantum theory, Lecture notes edited by A. Böhm, J. D. Dollard and W. H. Wootters

  18. Kümmerer, B.: Quantum Markov processes and applications in physics. Quantum Independent Increment Processes. II. Lecture Notes in Mathematics, pp. 259–330. Springer, Berlin (2006)

    Google Scholar 

  19. Kümmerer, B., Maassen, H.: Proceedings of the Mini-workshop MaPhySto (1999)

  20. Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37(49), 11889–11896 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lardizabal, C.F., Souza, R.R.: On a class of quantum channels, open random walks and recurrence. ArXiv e-prints (2014)

  22. Marais, A., Sinayskiy, I., Kay, A., Petruccione, F., Ekert, A.: Decoherence-assisted transport in quantum networks. New J. Phys. 15, 013038 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Pellegrini, C.: Continuous time open quantum random walks and non-Markovian Lindblad master equations. J. Stat. Phys. 154(3), 838–865 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  25. Russo, B., Dye, H.A.: A note on unitary operators in \(C^{\ast } \)-algebras. Duke Math. J. 33, 413–416 (1966)

    Article  MathSciNet  Google Scholar 

  26. Schrader, R.: Perron-Frobenius theory for positive maps on trace ideals. Mathematical Physics in Mathematics and Physics (Siena, 2000). Fields Institute Communications, pp. 361–378. American Mathematical Society, Providence (2001)

    Google Scholar 

  27. Sinayskiy, I., Petruccione, F.: Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quantum Inf. Process. 11(5), 1301–1309 (2012)

    Article  MathSciNet  Google Scholar 

  28. Sinayskiy, I., Petruccione, F.: Properties of open quantum walks on \({\mathbb{Z}}\). Physica Scripta T151, 014077 (2012)

    Article  ADS  MATH  Google Scholar 

  29. van Horssen, M., Guta, M.: A Sanov theorem for output statistics of quantum Markov chainss. ArXiv e-prints (2014)

  30. Xiong, S., Yang, W.-S.: Open quantum random walks with decoherence on coins with n degrees of freedom. J. Stat. Phys. 152(3), 473–492 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Pautrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, R., Pautrat, Y. Homogeneous Open Quantum Random Walks on a Lattice. J Stat Phys 160, 1125–1153 (2015). https://doi.org/10.1007/s10955-015-1261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1261-6

Keywords

Navigation